Responsive Supramolecular Polymers for Diagnosis and Treatment

被引:3
作者
Martinez-Orts, Monica [1 ]
Pujals, Silvia [1 ]
机构
[1] Inst Adv Chem Catalonia IQAC CSIC, Dept Biol Chem, Barcelona 08034, Spain
关键词
stimuli responsiveness; supramolecular polymers; non-covalent interactions; nanomedicine; stimuli-triggered delivery; DRUG-DELIVERY SYSTEMS; POLYPLEX MICELLES; CATHEPSIN-B; AMPHIPHILIC PEPTIDES; CONTROLLED-RELEASE; MOLECULAR-WEIGHT; BLOCK-COPOLYMERS; FORCE PRODUCTION; ULTRASOUND; NANOMEDICINE;
D O I
10.3390/ijms25074077
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Stimuli-responsive supramolecular polymers are ordered nanosized materials that are held together by non-covalent interactions (hydrogen-bonding, metal-ligand coordination, pi-stacking and, host-guest interactions) and can reversibly undergo self-assembly. Their non-covalent nature endows supramolecular polymers with the ability to respond to external stimuli (temperature, light, ultrasound, electric/magnetic field) or environmental changes (temperature, pH, redox potential, enzyme activity), making them attractive candidates for a variety of biomedical applications. To date, supramolecular research has largely evolved in the development of smart water-soluble self-assemblies with the aim of mimicking the biological function of natural supramolecular systems. Indeed, there is a wide variety of synthetic biomaterials formulated with responsiveness to control and trigger, or not to trigger, aqueous self-assembly. The design of responsive supramolecular polymers ranges from the use of hydrophobic cores (i.e., benzene-1,3,5-tricarboxamide) to the introduction of macrocyclic hosts (i.e., cyclodextrins). In this review, we summarize the most relevant advances achieved in the design of stimuli-responsive supramolecular systems used to control transport and release of both diagnosis agents and therapeutic drugs in order to prevent, diagnose, and treat human diseases.
引用
收藏
页数:27
相关论文
共 248 条
  • [1] Light-induced unfolding and refolding of supramolecular polymer nanofibres
    Adhikari, Bimalendu
    Yamada, Yuki
    Yamauchi, Mitsuaki
    Wakita, Kengo
    Lin, Xu
    Aratsu, Keisuke
    Ohba, Tomonori
    Karatsu, Takashi
    Hollamby, Martin J.
    Shimizu, Nobutaka
    Takagi, Hideaki
    Haruki, Rie
    Adachi, Shin-ichi
    Yagai, Shiki
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [2] Supramolecular architecture of a multi-component biomimetic lipid barrier formulation
    Ahmadi, Delaram
    Ledder, Ruth
    Mahmoudi, Najet
    Li, Peixun
    Tellam, James
    Robinson, Douglas
    Heenan, Richard K.
    Smith, Paul
    Lorenz, Christian D.
    Barlow, David J.
    Lawrence, M. Jayne
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 587 (587) : 597 - 612
  • [3] Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles
    Aldaye, FA
    Sleiman, HF
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (14) : 2204 - 2209
  • [4] Recent trends in stimuli-responsive hydrogels for the management of rheumatoid arthritis
    Ali, Aneesh
    Jori, Chandrashekhar
    Kumar, Ajay
    Khan, Rehan
    [J]. JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2023, 89
  • [5] Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury
    Alvarez, Z.
    Kolberg-Edelbrock, A. N.
    Sasselli, I. R.
    Ortega, J. A.
    Qiu, R.
    Syrgiannis, Z.
    Mirau, P. A.
    Chen, F.
    Chin, S. M.
    Weigand, S.
    Kiskinis, E.
    Stupp, S., I
    [J]. SCIENCE, 2021, 374 (6569) : 848 - +
  • [6] [Anonymous], 1987, The Nobel Prize in Chemistry
  • [7] GAUGING THE LIKELIHOOD OF CAVITATION FROM SHORT-PULSE, LOW-DUTY CYCLE DIAGNOSTIC ULTRASOUND
    APFEL, RE
    HOLLAND, CK
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 1991, 17 (02) : 179 - 185
  • [8] Tuning the pH-triggered self-assembly of dendritic peptide amphiphiles using fluorinated side chains
    Appel, Ralph
    Tacke, Sebastian
    Klingauf, Juergen
    Besenius, Pol
    [J]. ORGANIC & BIOMOLECULAR CHEMISTRY, 2015, 13 (04) : 1030 - 1039
  • [9] PREPARATION OF 1,3,5-TRIAMINOBENZENE BY REDUCTION OF PHLOROGLUCINOL TRIOXIME
    ARAI, I
    SEI, Y
    MURAMATSU, I
    [J]. JOURNAL OF ORGANIC CHEMISTRY, 1981, 46 (22) : 4597 - 4599
  • [10] Ariga K., 2016, Biomaterials Nanoarchitectonics, P25, DOI DOI 10.1016/B978-0-323-37127-8.00003-0