Strong F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {F}$\end{document}-convexity and concavity and refinements of some classical inequalities

被引:0
作者
Jurica Perić [1 ]
机构
[1] University of Split,Department of Mathematics, Faculty of Science
关键词
Strong concavity; Strong ; -concavity; Young inequality; Reversed Young inequality; Jensen inequality; Lah; Ribarič inequality; 26D15; 26A51;
D O I
10.1186/s13660-024-03178-2
中图分类号
学科分类号
摘要
The concept of strong F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal {F}}$\end{document}-convexity is a natural generalization of strong convexity. Although strongly concave functions are rarely mentioned and used, we show that in more effective and specific analysis this concept is very useful, and especially its generalization, namely strong F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal {F}}$\end{document}-concavity. Using this concept, refinements of the Young inequality are given as a model case. A general form of the self-improving property for Jensen type inequalities is presented. We show that a careful choice of control functions for convex or concave functions can give a control over these refinements and produce refinements of the power mean inequalities.
引用
收藏
相关论文
共 22 条
  • [1] Dragomir S.S.(2001)On a reverse of Jessen’s inequality for isotonic linear functionals JIPAM. J. Inequal. Pure Appl. Math. 2 1337-1349
  • [2] Dragomir S.S.(2018)Jensen’s and Hermite-Hadamard’s type inequalities for lower and strongly convex functions on normed spaces Bull. Iranian Math. Soc. 44 49-69
  • [3] Nikodem K.(2024)Improvements of Jensen’s inequality and its converse for strongly convex functions with applications to strongly f-divergences J. Math. Anal. Appl. 531 6566-6575
  • [4] Ivelić Bradanović S.(1905)Om konvexe funktioner og uligheder mellem Middelvaerdier Nyt Tidsskr. Math. 16B 516-522
  • [5] Jensen J.L.W.V.(2012)On the converse Jensen inequality Appl. Math. Comput. 218 201-205
  • [6] Klaričić Bakula M.(2016)On the converse Jensen inequality for strongly convex functions J. Math. Anal. Appl. 434 193-199
  • [7] Pečarić J.(1973)Converse of Jensen’s inequality for convex functions Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 412–460 287-290
  • [8] Perić J.(2021)Properties of Pečarić-type functions and applications Results Math. 76 undefined-undefined
  • [9] Klaričić M.(2010)Remarks on strongly convex functions Aequ. Math. 80 undefined-undefined
  • [10] Nikodem K.(2023)Some new refinements of the Young, Hölder, and Minkowski inequalities J. Inequal. Appl. 2023 undefined-undefined