All-Angle Scanning Perfect Anomalous Reflection by Using Passive Aperiodic Gratings

被引:10
作者
Li, Yongming [1 ,2 ]
Ma, Xikui [1 ]
Wang, Xuchen [2 ]
Ptitcyn, Grigorii [3 ]
Movahediqomi, Mostafa [2 ]
Tretyakov, Sergei A. [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Shaanxi, Peoples R China
[2] Aalto Univ, Dept Elect & Nanoengn, Espoo 00076, Finland
[3] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
关键词
Reflection; Impedance; Metasurfaces; Phased arrays; Strips; Scattering; Optimization; Anomalous reflection; aperiodic; locally periodic approximation (LPA); metagrating; metasurface; reflectarray; SPECULAR REFLECTION; DESIGN; METAGRATINGS; METASURFACES;
D O I
10.1109/TAP.2023.3329665
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Realizing continuous sweeping of perfect anomalous reflection in a wide angular range has become a technical challenge. This challenge cannot be overcome by the conventional aperiodic reflectarrays and periodic metasurfaces or metagratings. In this article, we investigate means to create scanning reflectarrays for the reflection of plane waves coming from any direction into any other direction without any parasitic scattering. The reflection angle can be continuously adjusted by proper tuning of reactive loads of each array element, while the geometrical period is kept constant. We conceptually study simple canonical 2-D arrays formed by impedance strips above a perfectly reflecting plane. This setup allows fully analytical solutions, which we exploit for understanding the physical nature of parasitic scattering and finding means to overcome fundamental limitations of conventional reflectarray antennas. We propose to use subwavelength-spaced arrays and optimize current distribution in lambda/2-sized supercells. As a result, we demonstrate perfect tunable reflection to any angle. Our work provides an effective approach to designing reconfigurable intelligent surfaces (RISs) with electrically tunable reflection angles.
引用
收藏
页码:877 / 889
页数:13
相关论文
共 39 条
[1]   Perfect control of reflection and refraction using spatially dispersive metasurfaces [J].
Asadchy, V. S. ;
Albooyeh, M. ;
Tcvetkova, S. N. ;
Diaz-Rubio, A. ;
Ra'di, Y. ;
Tretyakov, S. A. .
PHYSICAL REVIEW B, 2016, 94 (07)
[2]   Eliminating Scattering Loss in Anomalously Reflecting Optical Metasurfaces [J].
Asadchy, Viktar S. ;
Wickberg, Andreas ;
Diaz-Rubio, Ana ;
Wegener, Martin .
ACS PHOTONICS, 2017, 4 (05) :1264-1270
[3]  
Berry D., 1963, IEEE Trans. on Antennas and Propag., V11, P645, DOI 10.1109/TAP.1963.1138112
[4]  
Budhu J, 2011, IEEE ANTENNAS PROP, P97, DOI 10.1109/APS.2011.5996649
[5]   Dynamic Beam Steering With Reconfigurable Metagratings [J].
Casolaro, Andrea ;
Toscano, Alessandro ;
Alu, Andrea ;
Bilotti, Filiberto .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (03) :1542-1552
[6]   Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead [J].
Di Renzo, Marco ;
Zappone, Alessio ;
Debbah, Merouane ;
Alouini, Mohamed-Slim ;
Yuen, Chau ;
de Rosny, Julien ;
Tretyakov, Sergei .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (11) :2450-2525
[7]   On the Integration of Reconfigurable Intelligent Surfaces in Real-World Environments: A Convenient Approach for Estimation Reflection and Transmission. [J].
Diaz-Rubio, Ana ;
Kosulnikov, Sergei ;
Tretyakov, Sergei .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2022, 64 (04) :85-95
[8]   Macroscopic Modeling of Anomalously Reflecting Metasurfaces: Angular Response and Far-Field Scattering [J].
Diaz-Rubio, Ana ;
Tretyakov, Sergei A. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (10) :6560-6571
[9]   From the generalized reflection law to the realization of perfect anomalous reflectors [J].
Diaz-Rubio, Ana ;
Asadchy, Viktar S. ;
Elsakka, Amr ;
Tretyakov, Sergei A. .
SCIENCE ADVANCES, 2017, 3 (08)
[10]   Specular Reflection Analysis for Off-Specular Reflectarray Antennas [J].
El Hani, Rachid ;
Laurin, Jean-Jacques .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (07) :3575-3581