Underwater Image Enhancement via Weighted Wavelet Visual Perception Fusion

被引:154
作者
Zhang, Weidong [1 ,2 ]
Zhou, Ling [1 ,2 ]
Zhuang, Peixian [3 ]
Li, Guohou [1 ,2 ]
Pan, Xipeng [4 ]
Zhao, Wenyi [5 ]
Li, Chongyi [6 ]
机构
[1] Henan Inst Sci & Technol, Sch Informat Engn, Xinxiang 453003, Peoples R China
[2] Henan Inst Sci & Technol, Inst Comp Applicat, Xinxiang 453003, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[4] Guilin Univ Elect Technol, Sch Comp Sci & Informat Secur, Guilin 541004, Peoples R China
[5] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
[6] Nankai Univ, Sch Comp Sci, Tianjin 300071, Peoples R China
关键词
Underwater image enhancement; color correction; light scattering; contrast enhancement; underwater imaging; COLOR; LIGHT; CONTRAST;
D O I
10.1109/TCSVT.2023.3299314
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Underwater images typically suffer from various quality degradation issues due to the scattering and absorption of light, but these degraded-quality underwater images are unbeneficial for analysis and applications. To effectively solve these quality degradation issues, an underwater image enhancement method via weighted wavelet visual perception fusion is introduced, called WWPF. Concretely, we first present an attenuation-map-guided color correction strategy to correct the color distortion of an underwater image. Subsequently, we employ the maximum information entropy optimized global contrast strategy to the color-corrected image to obtain a global contrast-enhanced image. Meanwhile, we apply a fast integration optimized local contrast strategy to the color-corrected image to get a local contrast-enhanced image. To exploit the complementary of the global contrast-enhanced image and the local contrast-enhanced image, we introduce a weighted wavelet visual perception fusion strategy to obtain a high-quality underwater image by fusing the high-frequency and low-frequency components of images at different scales. Our extensive experiments on three benchmarks validate that our WWPF outperforms the state-of-the-art methods in qualitative and quantitative. Besides, the underwater images processed by our WWPF also benefit practical underwater applications. The code is available https://github.com/Li-Chongyi/WWPF_code.
引用
收藏
页码:2469 / 2483
页数:15
相关论文
共 68 条
[1]   Evaluation of underwater image enhancement algorithms based on Retinex and its implementation on embedded systems [J].
Aguirre-Castro, O. A. ;
Garcia-Guerrero, E. E. ;
Lopez-Bonilla, O. R. ;
Tlelo-Cuautle, E. ;
Lopez-Mancilla, D. ;
Cardenas-Valdez, J. R. ;
Olguin-Tiznado, J. E. ;
Inzunza-Gonzalez, E. .
NEUROCOMPUTING, 2022, 494 :148-159
[2]   Color Balance and Fusion for Underwater Image Enhancement [J].
Ancuti, Codruta O. ;
Ancuti, Cosmin ;
De Vleeschouwer, Christophe ;
Bekaert, Philippe .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) :379-393
[3]   Locally Adaptive Color Correction for Underwater Image Dehazing and Matching [J].
Ancuti, Codruta O. ;
Ancuti, Cosmin ;
De Vleeschouwer, Christophe ;
Garcia, Rafael .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :997-1005
[4]   Natural-based underwater image color enhancement through fusion of swarm-intelligence algorithm [J].
Azmi, Kamil Zakwan Mohd ;
Ghani, Ahmad Shahrizan Abdul ;
Yusof, Zulkifli Md ;
Ibrahim, Zuwairie .
APPLIED SOFT COMPUTING, 2019, 85
[5]   Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative Dataset [J].
Berman, Dana ;
Levy, Deborah ;
Avidan, Shai ;
Treibitz, Tali .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (08) :2822-2837
[6]   Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation [J].
Chan, Robin ;
Rottmann, Matthias ;
Gottschalk, Hanno .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :5108-5117
[7]   Single Underwater Image Restoration Based on Depth Estimation and Transmission Compensation [J].
Chang, Herng-Hua ;
Cheng, Chia-Yang ;
Sung, Chia-Chi .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2019, 44 (04) :1130-1149
[8]   UIDEF: A real-world underwater image dataset and a color-contrast complementary image enhancement framework [J].
Chang, Laibin ;
Song, Huajun ;
Li, Mingjie ;
Xiang, Ming .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 196 :415-428
[9]   Perceptual Underwater Image Enhancement With Deep Learning and Physical Priors [J].
Chen, Long ;
Jiang, Zheheng ;
Tong, Lei ;
Liu, Zhihua ;
Zhao, Aite ;
Zhang, Qianni ;
Dong, Junyu ;
Zhou, Huiyu .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (08) :3078-3092
[10]   Color Channel Compensation (3C): A Fundamental Pre-Processing Step for Image Enhancement [J].
Codruta, Ancuti O. ;
Ancuti, Cosmin ;
De Vleeschouwer, Christophe ;
Sbert, Mateu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :2653-2665