Red blood cells membrane micropolarity as a novel diagnostic indicator of type 1 and type 2 diabetes

被引:9
作者
Bianchetti G. [1 ,2 ]
Di Giacinto F. [1 ,2 ]
Pitocco D. [1 ,3 ]
Rizzi A. [1 ,3 ]
Rizzo G.E. [1 ,3 ]
De Leva F. [1 ,3 ]
Flex A. [1 ,4 ]
di Stasio E. [1 ,5 ]
Ciasca G. [1 ,2 ]
De Spirito M. [1 ,2 ]
Maulucci G. [1 ,2 ]
机构
[1] Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome
[2] Istituto di Fisica, Università Cattolica Del Sacro Cuore, Rome
[3] Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome
[4] Cardiovascular Disease Division, Università Cattolica Del Sacro Cuore, Rome
[5] Istituto di Biochimica Clinica, Università Cattolica Del Sacro Cuore, Rome
来源
Analytica Chimica Acta: X | 2019年 / 3卷
关键词
Diabetes mellitus; Fluorescence lifetime microscopy; Membrane micropolarity; Metabolic imaging; Personalized medicine; Red blood cells;
D O I
10.1016/j.acax.2019.100030
中图分类号
学科分类号
摘要
Classification of the category of diabetes is extremely important for clinicians to diagnose and select the correct treatment plan. Glycosylation, oxidation and other post-translational modifications of membrane and transmembrane proteins, as well as impairment in cholesterol homeostasis, can alter lipid density, packing, and interactions of Red blood cells (RBC) plasma membranes in type 1 and type 2 diabetes, thus varying their membrane micropolarity. This can be estimated, at a submicrometric scale, by determining the membrane relative permittivity, which is the factor by which the electric field between the charges is decreased relative to vacuum. Here, we employed a membrane micropolarity sensitive probe to monitor variations in red blood cells of healthy subjects (n=16) and patients affected by type 1 (T1DM, n=10) and type 2 diabetes mellitus (T2DM, n=24) to provide a cost-effective and supplementary indicator for diabetes classification. We find a less polar membrane microenvironment in T2DM patients, and a more polar membrane microenvironment in T1DM patients compared to control healthy patients. The differences in micropolarity are statistically significant among the three groups (p<0.01). The role of serum cholesterol pool in determining these differences was investigated, and other factors potentially altering the response of the probe were considered in view of developing a clinical assay based on RBC membrane micropolarity. These preliminary data pave the way for the development of an innovative assay which could become a tool for diagnosis and progression monitoring of type 1 and type 2 diabetes. © 2019 The Authors
引用
收藏
相关论文
共 48 条
[31]  
Pasenkiewicz-Gierula M., Rog T., Kitamura K., Kusumi A., Cholesterol effects on the phosphatidylcholine bilayer polar region: a molecular simulation study, Biophys. J., 78, pp. 1376-1389, (2000)
[32]  
Soubias O., Jolibois F., Milon A., Reat V., High-resolution 13C NMR of sterols in model membrane, Compt. Rendus Chem., 9, pp. 393-400, (2006)
[33]  
Rog T., Murzyn K., Pasenkiewicz-Gierula M., The dynamics of water at the phospholipid bilayer surface: a molecular dynamics simulation study, Chem. Phys. Lett., 352, pp. 323-327, (2002)
[34]  
Rog T., Pasenkiewicz-Gierula M., Cholesterol effects on a mixed-chain phosphatidylcholine bilayer: a molecular dynamics simulation study, Biochimie, 88, pp. 449-460, (2006)
[35]  
Pasenkiewicz-Gierula M., Takaoka Y., Miyagawa H., Kitamura K., Kusumi A., Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics simulation: location, geometry, and Lipid−Lipid bridging via hydrogen-bonded water, J. Phys. Chem. A, 101, pp. 3677-3691, (1997)
[36]  
Pasenkiewicz-Gierula M., Takaoka Y., Miyagawa H., Kitamura K., Kusumi A., Charge pairing of headgroups in phosphatidylcholine membranes: a molecular dynamics simulation study, Biophys. J., 76, pp. 1228-1240, (1999)
[37]  
Nelson G.J., Composition of neutral lipids from erythrocytes of common mammals, J. Lipid Res., 8, pp. 374-379, (1967)
[38]  
HAGERMAN J.S., GOULD R.G., The in vitro interchange of cholesterol between plasma and red cells, Proc. Soc. Exp. Biol. Med., 78, pp. 329-332, (1951)
[39]  
Glomset J.A., The plasma lecithins:cholesterol acyltransferase reaction, J. Lipid Res., 9, pp. 155-167, (1968)
[40]  
Turner S., Voogt J., Davidson M., Glass A., Killion S., Decaris J., Mohammed H., Minehira K., Boban D., Murphy E., Luchoomun J., Awada M., Neese R., Hellerstein M., Measurement of reverse cholesterol transport pathways in humans: in vivo rates of free cholesterol efflux, esterification, and excretion, J. Am. Heart Assoc., 1, (2012)