Red blood cells membrane micropolarity as a novel diagnostic indicator of type 1 and type 2 diabetes

被引:9
作者
Bianchetti G. [1 ,2 ]
Di Giacinto F. [1 ,2 ]
Pitocco D. [1 ,3 ]
Rizzi A. [1 ,3 ]
Rizzo G.E. [1 ,3 ]
De Leva F. [1 ,3 ]
Flex A. [1 ,4 ]
di Stasio E. [1 ,5 ]
Ciasca G. [1 ,2 ]
De Spirito M. [1 ,2 ]
Maulucci G. [1 ,2 ]
机构
[1] Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome
[2] Istituto di Fisica, Università Cattolica Del Sacro Cuore, Rome
[3] Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome
[4] Cardiovascular Disease Division, Università Cattolica Del Sacro Cuore, Rome
[5] Istituto di Biochimica Clinica, Università Cattolica Del Sacro Cuore, Rome
来源
Analytica Chimica Acta: X | 2019年 / 3卷
关键词
Diabetes mellitus; Fluorescence lifetime microscopy; Membrane micropolarity; Metabolic imaging; Personalized medicine; Red blood cells;
D O I
10.1016/j.acax.2019.100030
中图分类号
学科分类号
摘要
Classification of the category of diabetes is extremely important for clinicians to diagnose and select the correct treatment plan. Glycosylation, oxidation and other post-translational modifications of membrane and transmembrane proteins, as well as impairment in cholesterol homeostasis, can alter lipid density, packing, and interactions of Red blood cells (RBC) plasma membranes in type 1 and type 2 diabetes, thus varying their membrane micropolarity. This can be estimated, at a submicrometric scale, by determining the membrane relative permittivity, which is the factor by which the electric field between the charges is decreased relative to vacuum. Here, we employed a membrane micropolarity sensitive probe to monitor variations in red blood cells of healthy subjects (n=16) and patients affected by type 1 (T1DM, n=10) and type 2 diabetes mellitus (T2DM, n=24) to provide a cost-effective and supplementary indicator for diabetes classification. We find a less polar membrane microenvironment in T2DM patients, and a more polar membrane microenvironment in T1DM patients compared to control healthy patients. The differences in micropolarity are statistically significant among the three groups (p<0.01). The role of serum cholesterol pool in determining these differences was investigated, and other factors potentially altering the response of the probe were considered in view of developing a clinical assay based on RBC membrane micropolarity. These preliminary data pave the way for the development of an innovative assay which could become a tool for diagnosis and progression monitoring of type 1 and type 2 diabetes. © 2019 The Authors
引用
收藏
相关论文
共 48 条
[1]  
American Diabetes Association A.D., Diagnosis and classification of diabetes mellitus, Diabetes Care, 32, pp. S62-S67, (2009)
[2]  
Rand R.P., Parsegian V.A., Hydration forces between phospholipid bilayers, Biochim. Biophys. Acta Rev. Biomembr., 988, pp. 351-376, (1989)
[3]  
Reinhard Lipowsky R., Erich Sackmann E., Structure and Dynamics of Membranes, (1995)
[4]  
Pasenkiewicz-Gierula M., Rog T., Kitamura K., Kusumi A., Cholesterol effects on the phosphatidylcholine bilayer polar region: a molecular simulation study, Biophys. J., 78, pp. 1376-1389, (2000)
[5]  
Rog T., Pasenkiewicz-Gierula M., Vattulainen I., Karttunen M., What happens if cholesterol is made smoother: importance of methyl substituents in cholesterol ring structure on phosphatidylcholine–sterol interaction, Biophys. J., 92, pp. 3346-3357, (2007)
[6]  
Rog T., Pasenkiewicz-Gierula M., Vattulainen I., Karttunen M., Ordering effects of cholesterol and its analogues, Biochim. Biophys. Acta Biomembr., 1788, pp. 97-121, (2009)
[7]  
Wustner D., Solanko K., How cholesterol interacts with proteins and lipids during its intracellular transport, Biochim. Biophys. Acta Biomembr., 1848, pp. 1908-1926, (2015)
[8]  
Mikhailidis D.P., Elisaf M., Rizzo M., Berneis K., Griffin B., Zambon A., Athyros V., de Graaf J., Marz W., Parhofer K.G., Rini G.B., Spinas G.A., Tomkin G.H., Tselepis A.D., Wierzbicki A.S., Winkler K., Florentin M., Liberopoulos E., European panel on low density lipoprotein (LDL) subclasses": a statement on the pathophysiology, atherogenicity and clinical significance of LDL subclasses., Curr. Vasc. Pharmacol., 9, 2011, (2019)
[9]  
Constantinou C., Karavia E.A., Xepapadaki E., Petropoulou P.-I., Papakosta E., Karavyraki M., Zvintzou E., Theodoropoulos V., Filou S., Hatziri A., Kalogeropoulou C., Panayiotakopoulos G., Kypreos K.E., Advances in high-density lipoprotein physiology: surprises, overturns, and promises, Am. J. Physiol. Metab., 310, pp. E1-E14, (2016)
[10]  
Maulucci G., Cordelli E., Rizzi A., De Leva F., Papi M., Ciasca G., Samengo D., Pani G., Pitocco D., Soda P., Ghirlanda G., Iannello G., De Spirito M., Phase separation of the plasma membrane in human red blood cells as a potential tool for diagnosis and progression monitoring of type 1 diabetes mellitus, PLoS One, 12, (2017)