High rate 2,3-butanediol production with Vibrio natriegens

被引:30
作者
Erian A.M. [1 ]
Freitag P. [1 ]
Gibisch M. [1 ]
Pflügl S. [1 ]
机构
[1] Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, Vienna
关键词
2,3-Butanediol; Chemostat cultivations; Elemental biomass composition; High productivity; Microaerobic conditions; Vibrio natriegens;
D O I
10.1016/j.biteb.2020.100408
中图分类号
学科分类号
摘要
The aim of this study was to investigate if the high substrate turnover rates of Vibrio natriegens enable 2,3-butanediol production at high productivities. Introduction of a heterologous pathway led to 2,3-butanediol production at yields comparable to Escherichia coli using glucose, sucrose and sugar beet molasses. Microaerobic fed-batch cultivations maintained at 0–1% dissolved oxygen yielded a combined diol titer of 49.9 g L−1 of 2,3-butanediol and acetoin and a production rate of 3.9 g L−1 h−1. Optimization of the oxygen supply in chemostat cultivations increased the product yield to 70% of the theoretical maximum at volumetric and specific production rates of 2 g L−1 h−1 and 0.66 g g−1 h−1, respectively. In conclusion, this study could for the first time demonstrate V. natriegens as novel host for 2,3-butanediol production with high volumetric and specific productivity, underlining its potential for microbial chemical production. © 2020 The Author(s)
引用
收藏
相关论文
共 24 条
[1]  
Calero P., Nikel P.I., Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms, Microb. Biotechnol., 12, pp. 98-124, (2019)
[2]  
Dalia T.N., Hayes C.A., Stolyar S., Marx C.J., McKinlay J.B., Dalia A.B., Multiplex Genome Editing by Natural Transformation (MuGENT) for synthetic biology in Vibrio natriegens, ACS Synth. Biol., 6, pp. 1650-1655, (2017)
[3]  
Eagon R.G., Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes, J. Bacteriol., 83, pp. 736-737, (1962)
[4]  
Ellis G.A., Tschirhart T., Spangler J., Walper S.A., Medintz I.L., Vora G.J., Exploiting the feedstock flexibility of the emergent synthetic biology chassis Vibrio natriegens for engineered natural product production, Mar. Drugs, 17, (2019)
[5]  
Erian A.M., Gibisch M., Pflugl S., Engineered E. coli W enables efficient 2,3-butanediol production from glucose and sugar beet molasses using defined minimal medium as economic basis, Microb. Cell Factories, 17, (2018)
[6]  
Failmezger J., Scholz S., Blombach B., Siemann-Herzberg M., Cell-free protein synthesis from fast-growing Vibrio natriegens, Front. Microbiol., 9, (2018)
[7]  
Heyman B., Lamm R., Tulke H., Regestein L., Buchs J., Shake flask methodology for assessing the influence of the maximum oxygen transfer capacity on 2,3-butanediol production, Microb. Cell Factories, 18, (2019)
[8]  
Hoffart E., Grenz S., Lange J., Nitschel R., Muller F., Schwentner A., Feith A., Lenfers-Lucker M., Takors R., Blombach B., High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology, Appl. Environ. Microbiol., 83, (2017)
[9]  
Hwang H.J., Lee S.Y., Lee P.C., Engineering and application of synthetic nar promoter for fine-tuning the expression of metabolic pathway genes in Escherichia coli, Biotechnol. Biofuels, 11, (2018)
[10]  
Lee H.H., Ostrov N., Wong B.G., Gold M.A., Khalil A., Church G.M., Vibrio natriegens, a new genomic powerhouse, bioRxiv, (2016)