Modeling the complexity of drug-drug interactions: A physiologically-based pharmacokinetic study of Lenvatinib with Schisantherin A/Schisandrin A

被引:1
|
作者
Zheng, Aole [1 ]
Yang, Dongsheng [1 ]
Pan, Chunyang [1 ]
He, Qingfeng [1 ]
Zhu, Xiao [1 ]
Xiang, Xiaoqiang [1 ]
Ji, Peiying [2 ]
机构
[1] Fudan Univ, Sch Pharm, Dept Clin Pharm & Pharm Adm, Shanghai, Peoples R China
[2] Kong Jiang Hosp Yangpu Dist, Dept Pharm, Shanghai, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Lenvatinib (LEN); Schisantherin a (STA); Schisandrin a (SIA); Drug-drug interactions (DDIS); Physiologically-based Pharmacokinetic (PBPK); TYROSINE KINASE INHIBITOR; TACROLIMUS; PREDICTION; E7080; PBPK;
D O I
10.1016/j.ejps.2024.106757
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background: Lenvatinib's efficacy as a frontline targeted therapy for radioactive iodine-refractory thyroid carcinoma and advanced hepatocellular carcinoma owes to its inhibition of multiple tyrosine kinases. However, as a CYP3A4 substrate, lenvatinib bears susceptibility to pharmacokinetic modulation by co-administered agents. Schisantherin A (STA) and schisandrin A (SIA) - bioactive lignans abundant in the traditional Chinese medicinal Wuzhi Capsule - act as CYP3A4 inhibitors, engendering the potential for drug-drug interactions (DDIs) with lenvatinib. Methods: To explore potential DDIs between lenvatinib and STA/SIA, we developed a physiologically-based pharmacokinetic (PBPK) model for lenvatinib and used it to construct a DDI model for lenvatinib and STA/ SIA. The model was validated with clinical trial data and used to predict changes in lenvatinib exposure with combined treatment. Results: Following single-dose administration, the predicted area under the plasma concentration-time curve (AUC) and maximum plasma concentrations (Cmax) of lenvatinib increased 1.00- to 1.03-fold and 1.00- to 1.01fold, respectively, in the presence of STA/SIA. Simulations of multiple-dose regimens revealed slightly greater interactions, with lenvatinib AUC0-t and Cmax increasing up to 1.09-fold and 1.02-fold, respectively. Conclusion: Our study developed the first PBPK and DDI models for lenvatinib as a victim drug. STA and SIA slightly increased lenvatinib exposure in simulations, providing clinically valuable information on the safety of concurrent use. Given the minimal pharmacokinetic changes, STA/SIA are unlikely to interact with lenvatinib through pharmacokinetic alterations synergistically but rather may enhance efficacy through inherent anticancer efficacy of STA/ SIA.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Physiologically-Based Pharmacokinetic Modeling of Macitentan: Prediction of Drug-Drug Interactions
    de Kanter, Ruben
    Sidharta, Patricia N.
    Delahaye, Stphane
    Gnerre, Carmela
    Segrestaa, Jerome
    Buchmann, Stephan
    Kohl, Christopher
    Treiber, Alexander
    CLINICAL PHARMACOKINETICS, 2016, 55 (03) : 369 - 380
  • [2] Investigation of the Impact of CYP3A5 Polymorphism on Drug-Drug Interaction between Tacrolimus and Schisantherin A/Schisandrin A Based on Physiologically-Based Pharmacokinetic Modeling
    He, Qingfeng
    Bu, Fengjiao
    Zhang, Hongyan
    Wang, Qizhen
    Tang, Zhijia
    Yuan, Jing
    Lin, Hai-Shu
    Xiang, Xiaoqiang
    PHARMACEUTICALS, 2021, 14 (03) : 1 - 15
  • [3] Physiologically-Based Pharmacokinetic Modeling to Support the Clinical Management of Drug-Drug Interactions With Bictegravir
    Stader, Felix
    Battegay, Manuel
    Marzolini, Catia
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 110 (05) : 1231 - 1239
  • [4] Ribociclib Drug-Drug Interactions: Clinical Evaluations and Physiologically-Based Pharmacokinetic Modeling to Guide Drug Labeling
    Samant, Tanay S.
    Huth, Felix
    Umehara, Kenichi
    Schiller, Hilmar
    Dhuria, Shyeilla, V
    Elmeliegy, Mohamed
    Miller, Michelle
    Chakraborty, Abhijit
    Heimbach, Tycho
    He, Handan
    Ji, Yan
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2020, 108 (03) : 575 - 585
  • [5] PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODELING (PBPK) OF PITAVASTATIN AND ATORVASTATIN TO PREDICT DRUG-DRUG INTERACTIONS (DDIS).
    Duan, P.
    Zhao, P.
    Zhang, L.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2015, 97 : S16 - S17
  • [6] Physiologically-based pharmacokinetic modeling of prominent oral contraceptive agents and applications in drug-drug interactions
    Lewis, Gareth J.
    Ahire, Deepak
    Taskar, Kunal S.
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2024, 13 (04): : 563 - 575
  • [7] Physiologically-Based Pharmacokinetic Modeling of Macitentan: Prediction of Drug–Drug Interactions
    Ruben de Kanter
    Patricia N. Sidharta
    Stéphane Delahaye
    Carmela Gnerre
    Jerome Segrestaa
    Stephan Buchmann
    Christopher Kohl
    Alexander Treiber
    Clinical Pharmacokinetics, 2016, 55 : 369 - 380
  • [8] PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODELING FOR ASSESSMENT OF THE DRUG-DRUG INTERACTION POTENTIAL OF ZAVEGEPANT
    Ke, A.
    Callegari, E.
    Bhardwaj, R.
    Varma, M.
    Muto, C.
    Bertz, R.
    Sahasrabudhe, V.
    Liu, J.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2024, 115 : S107 - S107
  • [9] PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODELING OF ATORVASTATIN AND RELATED SPECIES AND PREDICTION OF DRUG-DRUG INTERACTIONS IN HUMANS.
    Morse, B. L.
    Alberts, J. J.
    Kolur, A.
    Posada, M. M.
    Tham, L.
    Loghin, C.
    Hall, S. D.
    Dickinson, G. L.
    Hillgren, K. M.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2019, 105 : S63 - S64
  • [10] Use of physiologically based pharmacokinetic modeling for assessment of drug-drug interactions
    Baneyx, Guillaume
    Fukushima, Yumi
    Parrott, Neil
    FUTURE MEDICINAL CHEMISTRY, 2012, 4 (05) : 681 - 693