A non-linear finite element method on unstructured meshes for added resistance in waves

被引:4
|
作者
Garcia-Espinosa, Julio [1 ,2 ]
Servan-Camas, Borja [1 ]
机构
[1] CIMNE, C Gran Capitan S-N, Barcelona 08034, Spain
[2] UPC, BarcelonaTech, Campus Naut,Edif NT3,C Escar 6-8, Barcelona 08039, Spain
关键词
Added resistance in waves; FEM; unstructured mesh; potential flow; HEAD SEAS; KVLCC2; MOTIONS; SIMULATIONS; DYNAMICS;
D O I
10.1080/17445302.2018.1483624
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this work a finite element method is proposed to solve the problem of estimating the added resistance of a ship in waves in the time domain and using unstructured meshes. Two different schemes are used to integrate the corresponding free surface kinematic and dynamic boundary conditions: the first one based on streamlines integration; and the second one based on the streamline-upwind Petrov-Galerkin stabilisation. The proposed numerical schemes have been validated in different test cases, including towing tank tests with monochromatic waves. The results obtained in this work show the suitability of the present method to estimate added resistance in waves in a computationally affordable manner.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 50 条
  • [21] A balanced-force control volume finite element method for interfacial flows with surface tension using adaptive anisotropic unstructured meshes
    Xie, Zhihua
    Pavlidis, Dimitrios
    Salinas, Pablo
    Percival, James R.
    Pain, Christopher C.
    Matar, Omar K.
    COMPUTERS & FLUIDS, 2016, 138 : 38 - 50
  • [22] A volume-conserving balanced-force level set method on unstructured meshes using a control volume finite element formulation
    Lin, Stephen
    Yan, Jinhui
    Kats, Dmitriy
    Wagner, Gregory J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 380 : 119 - 142
  • [23] Finite element modeling of 3-D DC resistivity using locally refined unstructured meshes
    Ren Zheng-Yong
    Tang Jing-Tian
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2009, 52 (10): : 2627 - 2634
  • [24] Third order accurate large-particle finite volume method on unstructured triangular meshes
    Song, SH
    Chen, MZ
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (05) : 1456 - 1463
  • [25] A finite volume method to solve the Navier-Stokes equations for incompressible flows on unstructured meshes
    Boivin, S
    Cayré, F
    Hérard, JM
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2000, 39 (08) : 806 - 825
  • [26] Non-linear propagation of kink waves to the solar chromosphere
    Stangalini, M.
    Giannattasio, F.
    Jafarzadeh, S.
    ASTRONOMY & ASTROPHYSICS, 2015, 577
  • [27] Nonlinear Finite Volume Method for the Interface Advection-Compression Problem on Unstructured Adaptive Meshes
    Vassilevski, Yu V.
    Terekhov, K. M.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2022, 62 (07) : 1041 - 1058
  • [28] Non-linear waves in lattices: past, present, future
    Kevrekidis, P. G.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2011, 76 (03) : 389 - 423
  • [29] Three-dimensional magnetotellurics modeling using edge-based finite-element unstructured meshes
    Liu Changsheng
    Ren Zhengyong
    Tang Jingtian
    Yan Yan
    APPLIED GEOPHYSICS, 2008, 5 (03) : 170 - 180
  • [30] A STAGGERED CELL-CENTERED FINITE ELEMENT METHOD FOR COMPRESSIBLE AND NEARLY-INCOMPRESSIBLE LINEAR ELASTICITY ON GENERAL MESHES
    Thanh Hai Ong
    Thi Thao Phuong Hoang
    Bordas, Stephane P. A.
    Nguyen-Xuan, H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) : 2051 - 2073