Bourgain-Brezis-Mironescu-Type Characterization of Inhomogeneous Ball Banach Sobolev Spaces on Extension Domains

被引:5
作者
Zhu, Chenfeng [1 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
关键词
Ball Banach function space; Ball Banach Sobolev space; Extension domain; Bourgain-Brezis-Mironescu-type characterization; LITTLEWOOD-PALEY CHARACTERIZATIONS; HARDY-SPACES; MAXIMAL OPERATOR; MORREY SPACES; BOUNDEDNESS; SMOOTHNESS; UNIFORM; APPROXIMATION; INTERPOLATION; CONTINUITY;
D O I
10.1007/s12220-024-01737-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {rho nu}nu is an element of(0,nu 0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\rho _\nu \}_{\nu \in (0,\nu _0)}$$\end{document} with nu 0 is an element of(0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _0\in (0,\infty )$$\end{document} be a nu 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _0$$\end{document}-radial decreasing approximation of the identity on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document}, X(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(\mathbb {R}<^>n)$$\end{document} a ball Banach function space satisfying some extra mild assumptions, and Omega subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}<^>n$$\end{document} a W1,X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,X}$$\end{document}-extension domain. In this article, the authors prove that, for any f belonging to the inhomogeneous ball Banach Sobolev space W1,X(Omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W}<^>{1,X}(\Omega )$$\end{document}, lim nu -> 0+integral Omega|f(<middle dot>)-f(y)|p|<middle dot>-y|p rho nu(|<middle dot>-y|)dy1pX(Omega)p=2 pi n-12 Gamma(p+12)Gamma(p+n2)del fX(Omega)p,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim _{\nu \rightarrow 0<^>+} \left\| \left[ \int _\Omega \frac{|f(\cdot )-f(y)|<^>p}{ |\cdot -y|<^>p}\rho _\nu (|\cdot -y|)\,\textrm{d}y \right] <^>\frac{1}{p}\right\| _{X(\Omega )}<^>p =\frac{2\pi <^>{\frac{n-1}{2}}\Gamma (\frac{p+1}{2})}{\Gamma (\frac{p+n}{2})} \left\| \,\left| \nabla f\right| \,\right\| _{X(\Omega )}<^>p, \end{aligned}$$\end{document}where Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is the Gamma function and p is an element of[1,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in [1,\infty )$$\end{document} is related to X(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(\mathbb {R}<^>n)$$\end{document}. Using this asymptotics, the authors further establish a characterization of W1,X(Omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,X}(\Omega )$$\end{document} in terms of the above limit. To achieve these, the authors develop a machinery via using a method of the extrapolation and some recently found profound properties of W1,X(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,X}(\mathbb {R}<^>n)$$\end{document} to overcome those difficulties caused by that the norm of X(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(\mathbb {R}<^>n)$$\end{document} has no explicit expression and X(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(\mathbb {R}<^>n)$$\end{document} might not be translation invariant. This characterization has a wide range of generality and can be applied to various Sobolev-type spaces, such as Morrey [Bourgain-Morrey-type, weighted (or mixed-norm or variable), local (or global) generalized Herz, Lorentz, and Orlicz (or Orlicz-slice)] Sobolev spaces, which are all new. Particularly, when X(Omega):=Lp(Omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(\Omega ):=L<^>p(\Omega )$$\end{document} with p is an element of(1,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,\infty )$$\end{document}, this characterization coincides with the celebrated results of J. Bourgain, H. Brezis, and P. Mironescu in 2001 and H. Brezis in 2002; moreover, this characterization is also new even when X(Omega):=Lq(Omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(\Omega ):=L<^>q(\Omega )$$\end{document} with both q is an element of(1,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (1,\infty )$$\end{document} and p is an element of[1,q)boolean OR(q,nn-1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in [1,q)\cup (q,\frac{n}{n-1}]$$\end{document}. In addition, the authors give several specific examples of W1,X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,X}$$\end{document}-extension domains as well as W(center dot)1,X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{W}<^>{1,X}$$\end{document}-extension domains.
引用
收藏
页数:70
相关论文
共 143 条
[91]   Banach function spaces done right [J].
Lorist, Emiel ;
Nieraeth, Zoe .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2024, 35 (02) :247-268
[92]   Anisotropic fractional Sobolev norms [J].
Ludwig, Monika .
ADVANCES IN MATHEMATICS, 2014, 252 :150-157
[93]  
Martio O., 1979, Ann. Acad. Sci. Fenn. Ser. A I Math, V4, P383
[94]   Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg-de Vries equation [J].
Masaki, Satoshi ;
Segata, Jun-ichi .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (02) :283-326
[95]   Best approximation and moduli of smoothness for doubling weights [J].
Mastroianni, G ;
Totik, V .
JOURNAL OF APPROXIMATION THEORY, 2001, 110 (02) :180-199
[96]  
Maz'ya V, 2011, GRUNDLEHR MATH WISS, V342, P1, DOI 10.1007/978-3-642-15564-2
[97]   Notes on limits of Sobolev spaces and the continuity of interpolation scales [J].
Milman, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (09) :3425-3442
[98]   Gradient potential estimates [J].
Mingione, Giuseppe .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (02) :459-486
[99]  
Mohanta K, 2024, CALC VAR PARTIAL DIF, V63, DOI 10.1007/s00526-023-02637-w
[100]   On the solutions of quasi-linear elliptic partial differential equations [J].
Morrey, Charles B., Jr. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) :126-166