Suppression of nonlinear noise in a high-speed optical channel with variable dispersion compensation

被引:0
|
作者
Shapiro E.G. [1 ]
Shapiro D.A. [1 ]
机构
[1] Institute of Automation and Electrometrics, Siberian Branch, Russian Academy of Sciences, 1 Koptjug Avenue, Novosibirsk
关键词
chirped pulses; nonlinear noise classification; optical fiber communication;
D O I
10.1515/joc-2020-0097
中图分类号
学科分类号
摘要
The numerical modeling of short optical pulses propagation in the communication link is carried out. The combination of high chirp and variable dispersion compensation is proposed to suppress the nonlinear noise. The variable dispersion decreases the bit error rate by 10 times. Calculations for 25 ps pulses propagating by 1000 km with 8-level amplitude-phase modulation and two polarization states confirm that the chirp and compensation decrease the nonlinearity effects and improve the quality of detection radically. The results can be useful when choosing a high-speed communication line design. © 2023 Walter de Gruyter GmbH. All rights reserved.
引用
收藏
页码:S1883 / S1886
页数:3
相关论文
共 50 条
  • [31] Polarization mode dispersion in high-speed optical communication systems
    Ferreira, MF
    Pinto, AN
    André, PS
    Muga, NJ
    Machado, JE
    Nogueira, RN
    Latas, SV
    Sousa, MH
    Rocha, JF
    FIBER AND INTEGRATED OPTICS, 2005, 24 (3-4) : 261 - 285
  • [32] Compensation of nonlinear signal distortions in an optical path of a high-speed fiber-optic transmission system
    Moscow Technical University of Information Systems, Moscow, Russia
    Telecommun Radio Eng, 2008, 19 (1729-1742):
  • [33] Nonlinear friction compensation and disturbance observer for a high-speed motion platform
    Wang, Y
    Xiong, ZH
    Ding, H
    Zhu, XY
    2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 4515 - 4520
  • [34] PRECHIRP TECHNIQUE FOR DISPERSION COMPENSATION FOR A HIGH-SPEED LONG-SPAN TRANSMISSION
    SAITO, T
    HENMI, N
    FUJITA, S
    YAMAGUCHI, M
    SHIKADA, M
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1991, 3 (01) : 74 - 76
  • [35] Digital nonlinear compensation techniques for high-speed DWDM transmission systems
    Hoshida, Takeshi
    Dou, Liang
    Tanimura, Takahito
    Yan, Weizhen
    Oda, Shoichiro
    Li, Lei
    Nakashima, Hisao
    Yan, Meng
    Tao, Zhenning
    Rasmussen, Jens C.
    NEXT-GENERATION OPTICAL COMMUNICATION: COMPONENTS, SUB-SYSTEMS, AND SYSTEMS, 2012, 8284
  • [36] Rate 2/3 modulation code for suppression of intrachannel nonlinear effects in high-speed optical transmission
    Djordjevic, I. B.
    Vasic, B.
    Rao, V. S.
    IEE PROCEEDINGS-OPTOELECTRONICS, 2006, 153 (02): : 87 - 92
  • [37] Digitally controlled programmable high-speed variable optical attenuator
    Li, Sailu
    Jin, Xiaofeng
    Zhang, Xianmin
    Zou, Yingyin Kevin
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2006, 48 (06) : 1019 - 1021
  • [38] Optical Polarization Mode Dispersion Compensators for High-Speed Optical Communication Systems
    Xie, Chongjin
    Werner, Dieter
    Haunstein, Herbert
    Jopson, Robert M.
    Chandrasekhar, Sethumadhavan
    Liu, Xiang
    Shi, Yan
    Gronbach, Siegfried
    Link, Thomas
    Czotscher, Konrad
    BELL LABS TECHNICAL JOURNAL, 2010, 14 (04) : 115 - 129
  • [39] High-speed Maglev Harmonic Current Suppression Strategy Based on Feedforward Compensation
    Cao, Xueqian
    Ge, Qiongxuan
    Wang, Ke
    Wang, Qi
    Zheng, Yanxi
    2021 24TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2021), 2021, : 1849 - 1853
  • [40] High-speed noise-free optical quantum memory
    Kaczmarek, K. T.
    Ledingham, P. M.
    Brecht, B.
    Thomas, S. E.
    Thekkadath, G. S.
    Lazo-Arjona, O.
    Munns, J. H. D.
    Poem, E.
    Feizpour, A.
    Saunders, D. J.
    Nunn, J.
    Walmsley, I. A.
    PHYSICAL REVIEW A, 2018, 97 (04)