Large non-trivial t-intersecting families of signed sets

被引:0
作者
Yao, Tian [1 ]
Lv, Benjian [1 ,2 ]
Wang, Kaishun [1 ,2 ]
机构
[1] Henan Inst Sci & Technol, Sch Math Sci, Xinxiang 453003, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
来源
AUSTRALASIAN JOURNAL OF COMBINATORICS | 2024年 / 89卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
KO-RADO THEOREM; SYSTEMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For positive integers n, r, k with n > r and k > 2, a set {(x(1), y(1)), (x(2), y(2)), . . ., (x(r), y(r))} is called a k -signed r -set on [n] if x(1), ... , x(r) are distinct elements of [n] and y(1), ... , y(r) E [k]. We say that a t -intersecting family consisting of k -signed r -sets on [n] is trivial if each member of this family contains a fixed k -signed t -set. In this paper, we determine the structure of large maximal non -trivial t -intersecting families of k -signed r -sets. In particular, we characterize the non -trivial t -intersecting families with maximum size for t >= 2, extending a Hilton -Milner -type result for signed sets given by Borg.
引用
收藏
页码:32 / 48
页数:17
相关论文
共 40 条
  • [1] The structure of large non-trivial t-intersecting families of finite sets
    Cao, Mengyu
    Lv, Benjian
    Wang, Kaishun
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 97
  • [2] Non-trivial t-intersecting separated families
    Frankl, Peter
    Liu, Erica L. L.
    Wang, Jian
    Yang, Zhe
    DISCRETE APPLIED MATHEMATICS, 2024, 342 : 124 - 137
  • [3] Nearly extremal non-trivial cross t-intersecting families and r-wise t-intersecting families
    Cao, Mengyu
    Lu, Mei
    Lv, Benjian
    Wang, Kaishun
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120
  • [4] Non-trivial t-intersecting families for symplectic polar spaces
    Yao, Tian
    Lv, Benjian
    Wang, Kaishun
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 77
  • [5] On t-intersecting families of signed sets and permutations
    Borg, Peter
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3310 - 3317
  • [6] A note on the maximum product-size of non-trivial cross t-intersecting families
    Wu, Biao
    Xiong, Rong
    DISCRETE MATHEMATICS, 2024, 347 (02)
  • [7] On cross t-intersecting families of sets
    Tokushige, Norihide
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (08) : 1167 - 1177
  • [8] NON-TRIVIAL r-WISE INTERSECTING FAMILIES
    Frankl, P.
    Wang, J.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (02) : 510 - 523
  • [9] Non-trivial intersecting uniform sub-families of hereditary families
    Borg, Peter
    DISCRETE MATHEMATICS, 2013, 313 (17) : 1754 - 1761
  • [10] ON DIVERSITY OF CERTAIN t-INTERSECTING FAMILIES
    Ku, Cheng Yeaw
    Wong, Kok Bin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (04) : 815 - 829