Evolutionary multi-objective high-order tetrahedral mesh optimization

被引:0
|
作者
Ji, Yang [1 ]
Liu, Shibo [2 ]
Guo, Jia-Peng [1 ]
Su, Jian-Ping [3 ]
Fu, Xiao-Ming [2 ]
机构
[1] Univ Sci & Technol China, Sch Data Sci, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[3] Tencent Games, Shenzhen 518000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
High-order meshing; Mesh optimization; Multi-objective optimization; Genetic algorithms; GENERATION; 3D; DOMAINS; INTERPOLATION; VALIDITY; SURFACES;
D O I
10.1016/j.cagd.2024.102302
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
High -order mesh optimization has many goals, such as improving smoothness, reducing approximation error, and improving mesh quality. The previous methods do not optimize these objectives together, resulting in suboptimal results. To this end, we propose a multi-objective optimization method for high -order meshes. Central to our algorithm is using the multi-objective genetic algorithm (MOGA) to adapt to the multiple optimization objectives. Specifically, we optimize each control point one by one, where the MOGA is applied. We demonstrate the feasibility and effectiveness of our method over various models. Compared to other state -ofthe -art methods, our method achieves a favorable trade -off between multiple objectives.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Evolutionary constrained multi-objective optimization: a review
    Jing Liang
    Hongyu Lin
    Caitong Yue
    Xuanxuan Ban
    Kunjie Yu
    Vicinagearth, 1 (1):
  • [42] A hierarchical evolutionary approach to multi-objective optimization
    Mumford, CL
    CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 1944 - 1951
  • [43] An new evolutionary multi-objective optimization algorithm
    Mu, SJ
    Su, HY
    Chu, J
    Wang, YX
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 914 - 920
  • [44] On test functions for evolutionary multi-objective optimization
    Okabe, T
    Jin, YC
    Olhofer, M
    Sendhoff, B
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN VIII, 2004, 3242 : 792 - 802
  • [45] An evolutionary algorithm for constrained multi-objective optimization
    Jiménez, F
    Gómez-Skarmeta, AF
    Sánchez, G
    Deb, K
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1133 - 1138
  • [46] A study on multiform multi-objective evolutionary optimization
    Zhang, Liangjie
    Xie, Yuling
    Chen, Jianjun
    Feng, Liang
    Chen, Chao
    Liu, Kai
    MEMETIC COMPUTING, 2021, 13 (03) : 307 - 318
  • [47] Research on evolutionary multi-objective optimization algorithms
    Gong, Mao-Guo
    Jiao, Li-Cheng
    Yang, Dong-Dong
    Ma, Wen-Ping
    Ruan Jian Xue Bao/Journal of Software, 2009, 20 (02): : 271 - 289
  • [48] Special Issue on Evolutionary Multi-objective Optimization
    Stewart, Theodor
    JOURNAL OF MULTI-CRITERIA DECISION ANALYSIS, 2013, 20 (5-6) : 213 - 215
  • [49] A Hybrid Framework for Evolutionary Multi-objective Optimization
    Sindhya, Karthik
    Miettinen, Kaisa
    Deb, Kalyanmoy
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (04) : 495 - 511
  • [50] Hierarchical approach to evolutionary multi-objective optimization
    Ciepiela, Eryk
    Kocot, Joanna
    Siwik, Leszek
    Drezewski, Rafal
    COMPUTATIONAL SCIENCE - ICCS 2008, PT 3, 2008, 5103 : 740 - 749