Evolutionary multi-objective high-order tetrahedral mesh optimization

被引:0
|
作者
Ji, Yang [1 ]
Liu, Shibo [2 ]
Guo, Jia-Peng [1 ]
Su, Jian-Ping [3 ]
Fu, Xiao-Ming [2 ]
机构
[1] Univ Sci & Technol China, Sch Data Sci, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[3] Tencent Games, Shenzhen 518000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
High-order meshing; Mesh optimization; Multi-objective optimization; Genetic algorithms; GENERATION; 3D; DOMAINS; INTERPOLATION; VALIDITY; SURFACES;
D O I
10.1016/j.cagd.2024.102302
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
High -order mesh optimization has many goals, such as improving smoothness, reducing approximation error, and improving mesh quality. The previous methods do not optimize these objectives together, resulting in suboptimal results. To this end, we propose a multi-objective optimization method for high -order meshes. Central to our algorithm is using the multi-objective genetic algorithm (MOGA) to adapt to the multiple optimization objectives. Specifically, we optimize each control point one by one, where the MOGA is applied. We demonstrate the feasibility and effectiveness of our method over various models. Compared to other state -ofthe -art methods, our method achieves a favorable trade -off between multiple objectives.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Order scheduling multi-objective optimization
    Chen, Xin-lin
    Zhang, Shuang-Wu
    Wang, Xiang-gang
    2009 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND COMPUTER SCIENCE, VOL 1, PROCEEDINGS, 2009, : 281 - +
  • [22] Module-order modeling using an evolutionary multi-objective optimization approach
    Khoshgoftaar, TM
    Liu, Y
    Seliya, N
    10TH INTERNATIONAL SYMPOSIUM ON SOFTWARE METRICS, PROCEEDINGS, 2004, : 159 - 169
  • [23] Evolutionary methods for multi-objective portfolio optimization
    Radiukyniene, I.
    Zilinskas, A.
    WORLD CONGRESS ON ENGINEERING 2008, VOLS I-II, 2008, : 1155 - +
  • [24] Illustration of fairness in evolutionary multi-objective optimization
    Friedrich, Tobias
    Horoba, Christian
    Neumann, Frank
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (17) : 1546 - 1556
  • [25] An evolutionary multi-objective optimization system for earthworks
    Parente, M.
    Cortez, P.
    Gomes Correia, A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (19) : 6674 - 6685
  • [26] Evolutionary Multi-Objective Optimization for Biped Walking
    Yanase, Toshihiko
    Iba, Hitoshi
    SIMULATED EVOLUTION AND LEARNING, PROCEEDINGS, 2008, 5361 : 635 - 644
  • [27] Multi-Objective BOO Optimization with Evolutionary Algorithms
    Shirinzadeh, Saeideh
    Soeken, Mathias
    Drechsler, Rolf
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 751 - 758
  • [28] An evolutionary algorithm for dynamic multi-objective optimization
    Wang, Yuping
    Dang, Chuangyin
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) : 6 - 18
  • [29] Weighted Preferences in Evolutionary Multi-objective Optimization
    Friedrich, Tobias
    Kroeger, Trent
    Neumann, Frank
    AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 291 - +
  • [30] Interleaving Guidance in Evolutionary Multi-Objective Optimization
    Lam Thu Bui
    Kalyanmoy Deb
    Hussein A.Abbass
    Daryl Essam
    Journal of Computer Science & Technology, 2008, 23 (01) : 44 - 63