Asset pricing and hedging in financial markets with fixed and proportional transaction costs

被引:1
作者
Babaei, Esmaeil [1 ]
机构
[1] Manchester Metropolitan Univ, Dept Comp & Math, Manchester M1 5GD, England
关键词
Von Neumann-Gale dynamical systems; Asset pricing; Hedging; Consistent valuation systems; Transaction costs; Portfolio constraints; G10; G12; G13; C61; C65; C67; NEUMANN-GALE DYNAMICS; SECURITIES MARKETS; COMPETITIVE PRICES; ARBITRAGE; PORTFOLIO; VIABILITY; THEOREM; MODEL; TIME;
D O I
10.1007/s10436-024-00441-w
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We establish the asset pricing and hedging principle in a financial market model, which is a specific case of the von Neumann-Gale dynamical system, with both fixed and proportional transaction costs and trading constraints. The main results are hedging criteria stated in terms of consistent valuation systems, generalizing the notion of an equivalent martingale measure.
引用
收藏
页码:259 / 275
页数:17
相关论文
共 50 条
[1]  
[Anonymous], 1967, Memoirs of the American Mathematical Society
[2]   Log-optimal and rapid paths in von Neumann-Gale dynamical systems [J].
Babaei, E. ;
Evstigneev, I. V. ;
Schenk-Hoppe, K. R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 481 (02)
[3]   Von Neumann-Gale dynamics and capital growth in financial markets with frictions [J].
Babaei, Esmaeil ;
Evstigneev, Igor, V ;
Schenk-Hoppe, Klaus Reiner ;
Zhitlukhin, Mikhail .
MATHEMATICS AND FINANCIAL ECONOMICS, 2020, 14 (02) :283-305
[4]   Von Neumann-Gale model, market frictions and capital growth [J].
Babaei, Esmaeil ;
Evstigneev, Igor V. ;
Schenk-Hoppe, Klaus Reiner ;
Zhitlukhin, Mikhail .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2021, 93 (02) :279-310
[5]   Rapid paths in von Neumann-Gale dynamical systems [J].
Bahsoun, Wael ;
Evstigneev, Igor V. ;
Taksar, Michael I. .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2008, 80 (2-3) :129-141
[6]  
Bensaid B., 1992, MATH FINANCE, V2, P63, DOI DOI 10.1111/J.1467-9965.1992.TB00039.X
[7]  
Bjork T., 1998, Arbitrage Theory in Continuous Time, DOI [10.1093/0198775180.001.0001, DOI 10.1093/0198775180.001.0001]
[8]   Fundamental Theorem of Asset Pricing under fixed and proportional transaction costs [J].
Brown, Martin ;
Zastawniak, Tomasz .
ANNALS OF FINANCE, 2020, 16 (03) :423-433
[9]   No arbitrage in discrete time under portfolio constraints [J].
Carassus, L ;
Pham, H ;
Touzi, N .
MATHEMATICAL FINANCE, 2001, 11 (03) :315-329
[10]   Competitive prices for a stochastic input-output model with infinite time horizon [J].
Clark, Stephen A. .
ECONOMIC THEORY, 2008, 35 (01) :1-17