AI-enhanced reconstruction of the 12-lead electrocardiogram via 3-leads with accurate clinical assessment

被引:1
作者
Mason, Federico [1 ,2 ]
Pandey, Amitabh C. [1 ,3 ,4 ]
Gadaleta, Matteo [1 ]
Topol, Eric J. [1 ,3 ]
Muse, Evan D. [1 ,3 ]
Quer, Giorgio [1 ]
机构
[1] Scripps Res Translat Inst, La Jolla, CA 92037 USA
[2] Univ Padua, Dept Informat Engn, I-35131 Padua, Italy
[3] Scripps Clin, La Jolla, CA 92037 USA
[4] Tulane Univ, Sch Med, New Orleans, LA 70112 USA
基金
美国国家卫生研究院;
关键词
MYOCARDIAL-INFARCTION; DIGITAL MEDICINE; NEURAL-NETWORK; TIME-DELAY; ECG; LEADS;
D O I
10.1038/s41746-024-01193-7
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The 12-lead electrocardiogram (ECG) is an integral component to the diagnosis of a multitude of cardiovascular conditions. It is performed using a complex set of skin surface electrodes, limiting its use outside traditional clinical settings. We developed an artificial intelligence algorithm, trained over 600,000 clinically acquired ECGs, to explore whether fewer leads as input are sufficient to reconstruct a 12-lead ECG. Two limb leads (I and II) and one precordial lead (V3) were required to generate a reconstructed 12-lead ECG highly correlated with the original ECG. An automatic algorithm for detection of ECG features consistent with acute myocardial infarction (MI) performed similarly for original and reconstructed ECGs (AUC = 0.95). When interpreted by cardiologists, reconstructed ECGs achieved an accuracy of 81.4 +/- 5.0% in identifying ECG features of ST-segment elevation MI, comparable with the original 12-lead ECGs (accuracy 84.6 +/- 4.6%). These results will impact development efforts to innovate ECG acquisition methods with simplified tools in non-specialized settings.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad .
INFORMATION SCIENCES, 2017, 415 :190-198
[2]  
Al-Zaiti S, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-17804-2
[3]  
[Anonymous], 2021, Eur Heart J, V42, P1908, DOI 10.1093/eurheartj/ehaa895
[4]   A Novel Neural-Network Model for Deriving Standard 12-Lead ECGs From Serial Three-Lead ECGs: Application to Self-Care [J].
Atoui, Hussein ;
Fayn, Jocelyne ;
Rubel, Paul .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2010, 14 (03) :883-890
[5]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[6]   Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography [J].
Cho, Younghoon ;
Kwon, Joon-myoung ;
Kim, Kyung-Hee ;
Medina-Inojosa, Jose R. ;
Jeon, Ki-Hyun ;
Cho, Soohyun ;
Lee, Soo Youn ;
Park, Jinsik ;
Oh, Byung-Hee .
SCIENTIFIC REPORTS, 2020, 10 (01)
[7]   Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction - Every minute of delay counts [J].
De Luca, G ;
Suryapranata, H ;
Ottervanger, JP ;
Antman, EM .
CIRCULATION, 2004, 109 (10) :1223-1225
[8]   Prediction of atrial fibrillation from at-home single-lead ECG signals without arrhythmias [J].
Gadaleta, Matteo ;
Harrington, Patrick ;
Barnhill, Eric ;
Hytopoulos, Evangelos ;
Turakhia, Mintu P. ;
Steinhubl, Steven R. ;
Quer, Giorgio .
NPJ DIGITAL MEDICINE, 2023, 6 (01)
[9]   On the Effectiveness of Deep Representation Learning: The Atrial Fibrillation Case [J].
Gadaleta, Matteo ;
Rossi, Michele ;
Topol, Eric J. ;
Steinhubl, Steven R. ;
Quer, Giorgio .
COMPUTER, 2019, 52 (11) :18-29
[10]   Lead Reconstruction Using Artificial Neural Networks for Ambulatory ECG Acquisition [J].
Grande-Fidalgo, Alejandro ;
Calpe, Javier ;
Redon, Monica ;
Millan-Navarro, Carlos ;
Soria-Olivas, Emilio .
SENSORS, 2021, 21 (16)