Does radiofrequency ablation procedural data improve the accuracy of identifying atrial fibrillation recurrence?

被引:1
作者
Peng, Mingkai [1 ]
Doshi, Amit [2 ]
Amos, Yariv [3 ]
Tsoref, Liat [3 ]
Amit, Mati [3 ]
Yungher, Don [3 ]
Khanna, Rahul [1 ]
Coplan, Paul M. [1 ,4 ]
机构
[1] Johnson & Johnson, MedTech, Epidemiol & Real World Data Sci, New Brunswick, NJ 08933 USA
[2] Mercy Hosp, St Louis, MO USA
[3] Biosense Webster LTD, Haifa Technol Ctr, Haifa, Israel
[4] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA
来源
PLOS ONE | 2024年 / 19卷 / 04期
关键词
D O I
10.1371/journal.pone.0300309
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Radiofrequency ablation (RFA) using the CARTO 3D mapping system is a common approach for pulmonary vein isolation to treat atrial fibrillation (AF). Linkage between CARTO procedural data and patients' electronical health records (EHR) provides an opportunity to identify the ablation-related parameters that would predict AF recurrence. The objective of this study is to assess the incremental accuracy of RFA procedural data to predict post-ablation AF recurrence using machine learning model. Procedural data generated during RFA procedure were downloaded from CARTONET and linked to deidentified Mercy Health EHR data. Data were divided into train (70%) and test (30%) data for model development and validation. Automate machine learning (AutoML) was used to predict 1 year AF recurrence, defined as a composite of repeat ablation, electrical cardioversion, and AF hospitalization. At first, AutoML model only included Patients' demographic and clinical characteristics. Second, an AutoML model with procedural variables and demographical/clinical variables was developed. Area under receiver operating characteristic curve (AUROC) and net reclassification improvement (NRI) were used to compare model performances using test data. Among 306 patients, 67 (21.9%) patients experienced 1-year AF recurrence. AUROC increased from 0.66 to 0.78 after adding procedural data in the AutoML model based on test data. For patients with AF recurrence, NRI was 32% for model with procedural data. Nine of 10 important predictive features were CARTO procedural data. From CARTO procedural data, patients with lower contact force in right inferior site, long ablation duration, and low number of left inferior and right roof lesions had a higher risk of AF recurrence. Patients with persistent AF were more likely to have AF recurrence. The machine learning model with procedural data better predicted 1-year AF recurrence than the model without procedural data. The model could be used for identification of patients with high risk of AF recurrence post ablation.
引用
收藏
页数:13
相关论文
共 17 条
[1]   Atrial fibrillation: Epidemiology, pathophysiology, and clinical complications (literature review) [J].
Bizhanov, Kenzhebek A. ;
Abzaliyev, Kuat B. ;
Baimbetov, Adil K. ;
Sarsenbayeva, Akmoldir B. ;
Lyan, Evgeny .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2023, 34 (01) :153-165
[2]   Internationally validated score to predict the outcome of non-paroxysmal atrial fibrillation ablation: the 'FLAME score' [J].
Boyalla, Vennela ;
Jarman, Julian W. E. ;
Markides, Vias ;
Hussain, Wajid ;
Wong, Tom ;
Mead, R. Hardwin ;
Engel, Gregory ;
Kong, Melissa H. ;
Patrawala, Rob A. ;
Winkle, Roger A. .
OPEN HEART, 2021, 8 (02)
[3]  
Calkins H, 2018, EUROPACE, V20, P157, DOI [10.1093/europace/eux274, 10.1093/europace/eux275, 10.1016/j.hrthm.2017.05.012]
[4]   Very early versus early referral for ablation in young patients with newly diagnosed paroxysmal atrial fibrillation [J].
D'Angelo, Robert N. ;
Khanna, Rahul ;
Wong, Charlene ;
Yeh, Robert W. ;
Goldstein, Laura ;
Marcello, Stephen ;
Tung, Patricia ;
D'Avila, Andre ;
Zimetbaum, Peter J. .
PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 2022, 45 (03) :348-356
[5]  
Darby Andrew E, 2016, J Atr Fibrillation, V9, P1427, DOI 10.4022/jafib.1427
[6]   Predicting recurrent atrial fibrillation after catheter ablation: a systematic review of prognostic models [J].
Dretzkee, Janine ;
Chuchue, Naomi ;
Agarwale, Ridhi ;
Herde, Clare ;
Chuae, Winnie ;
Fabritze, Larissa ;
Baylisse, Susan ;
Kotechae, Dipak ;
Deekse, Jonathan J. ;
Kirchhofe, Paulus ;
Takwoingie, Yemisi .
EUROPACE, 2020, 22 (05) :748-760
[7]  
Erickson N, 2020, Arxiv, DOI [arXiv:2003.06505, 10.48550/arXiv.2003.06505]
[8]   Use of Ablation Index-Guided Ablation Results in High Rates of Durable Pulmonary Vein Isolation and Freedom From Arrhythmia in Persistent Atrial Fibrillation Patients The PRAISE Study Results [J].
Hussein, Ahmed ;
Das, Moloy ;
Riva, Stefania ;
Morgan, Maureen ;
Ronayne, Christina ;
Sahni, Ankita ;
Shaw, Matthew ;
Todd, Derick ;
Hall, Mark ;
Modi, Simon ;
Natale, Andrea ;
Dello Russo, Antonio ;
Snowdon, Richard ;
Gupta, Dhiraj .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2018, 11 (09) :e006576
[9]   Ablation Versus Antiarrhythmic Drugs as First-Line Treatment of Paroxysmal Atrial Fibrillation A Meta-Analysis of Randomized Trials [J].
Kheiri, Babikir ;
Simpson, Timothy F. ;
Przybylowicz, Ryle ;
Merrill, Miranda ;
Alhamoud, Hani ;
Osman, Mohammed ;
Dalouk, Khidir ;
Stecker, Eric ;
Henrikson, Charles A. ;
Nazer, Babak .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2021, 14 (08)
[10]   Utility of a cloud-based lesion data collection software to record, monitor, and analyze an ablation strategy [J].
Kreidieh, Omar ;
Whitaker, John ;
Thurber, Clinton J. ;
Amit, Mati ;
Tsoref, Liat ;
Goldberg, Stanislav ;
Yungher, Don ;
Steiger, Nathaniel ;
Tadros, Thomas M. ;
Kapur, Sunil ;
Koplan, Bruce A. ;
Tedrow, Usha B. ;
Sauer, William H. ;
Zei, Paul C. .
HEART RHYTHM O2, 2022, 3 (03) :319-322