Exploring Iterated Implicit Function Systems: Existence and Properties of Attractors

被引:0
作者
Dai, Zhong [1 ]
Liu, Shutang [1 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Shandong, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2024年 / 34卷 / 05期
关键词
Fractal; iterated implicit function system; alpha-contractive; attractor; SPACE;
D O I
10.1142/S0218127424500597
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates a type of iterated implicit function systems composed of equations F-n(x,y) = c, where F-n(x,y) is a continuous function, and c is a constant. The existence of attractors of iterated implicit function systems is proved based on different equation conditions, including the equation F-n(x,y) = c containing the implicit function or being alpha(n)-contractive about y. Meanwhile, we give definitions of implicit convergence of functions and monotone sequence of iterated implicit function systems. Finally, some properties of attractors of iterated implicit function systems are elucidated.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Interpolation type iterated function systems [J].
Miculescu, Radu ;
Mihail, Alexandru ;
Pacurar, Cristina Maria .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (01)
[42]   Overlapping Iterated Function Systems on a Segment [J].
Barnsley, M. ;
Igudesman, K. B. .
RUSSIAN MATHEMATICS, 2012, 56 (12) :1-12
[43]   GENERALIZED COUNTABLE ITERATED FUNCTION SYSTEMS [J].
Secelean, Nicolae Adrian .
FILOMAT, 2011, 25 (01) :21-35
[44]   Real Projective Iterated Function Systems [J].
Barnsley, Michael F. ;
Vince, Andrew .
JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (04) :1137-1172
[45]   Overlapping iterated function systems on a segment [J].
M. Barnsley ;
K. B. Igudesman .
Russian Mathematics, 2012, 56 (12) :1-12
[46]   ITERATED FUNCTION SYSTEMS AS NEURAL NETWORKS [J].
STARK, J .
NEURAL NETWORKS, 1991, 4 (05) :679-690
[47]   ON ENRICHED CYCLIC ITERATED FUNCTION SYSTEMS [J].
Bisht, Ravindra K. .
FIXED POINT THEORY, 2020, 25 (02) :495-506
[48]   Real Projective Iterated Function Systems [J].
Michael F. Barnsley ;
Andrew Vince .
Journal of Geometric Analysis, 2012, 22 :1137-1172
[49]   Improved digital signature protocol using iterated function systems [J].
Al-Saidi, Nadia M. G. ;
Said, Mohamad Rushdan Md .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (17) :3613-3625
[50]   Properties of Neighborhoods of Attractors of Dynamical Systems [J].
Kalitine, B. S. .
MATHEMATICAL NOTES, 2021, 109 (5-6) :748-758