MOCHA's advanced statistical modeling of scATAC-seq data enables functional genomic inference in large human cohorts

被引:2
作者
Rachid Zaim, Samir [1 ]
Pebworth, Mark-Phillip [1 ]
Mcgrath, Imran [1 ]
Okada, Lauren [1 ]
Weiss, Morgan [1 ]
Reading, Julian [1 ]
Czartoski, Julie L. [2 ]
Torgerson, Troy R. [1 ]
McElrath, M. Juliana [2 ]
Bumol, Thomas F. [1 ]
Skene, Peter J. [1 ]
Li, Xiao-jun [1 ]
机构
[1] Allen Inst Immunol, Seattle, WA 98109 USA
[2] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, Seattle, WA USA
基金
美国国家卫生研究院;
关键词
CHROMATIN ACCESSIBILITY; INNATE IMMUNITY; CELL; ASSOCIATION;
D O I
10.1038/s41467-024-50612-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) is being increasingly used to study gene regulation. However, major analytical gaps limit its utility in studying gene regulatory programs in complex diseases. In response, MOCHA (Model-based single cell Open CHromatin Analysis) presents major advances over existing analysis tools, including: 1) improving identification of sample-specific open chromatin, 2) statistical modeling of technical drop-out with zero-inflated methods, 3) mitigation of false positives in single cell analysis, 4) identification of alternative transcription-starting-site regulation, and 5) modules for inferring temporal gene regulatory networks from longitudinal data. These advances, in addition to open chromatin analyses, provide a robust framework after quality control and cell labeling to study gene regulatory programs in human disease. We benchmark MOCHA with four state-of-the-art tools to demonstrate its advances. We also construct cross-sectional and longitudinal gene regulatory networks, identifying potential mechanisms of COVID-19 response. MOCHA provides researchers with a robust analytical tool for functional genomic inference from scATAC-seq data. Analytical gaps limit the utility of scATAC-seq for studying gene regulatory programs in human disease. Here, authors describe MOCHA, a robust analytical tool with advanced statistical modelling that enables functional genomic inference in large cross-sectional and longitudinal human studies.
引用
收藏
页数:24
相关论文
共 120 条
[1]   Fibrinolytic niche is required for alveolar type 2 cell-mediated alveologenesis via a uPA-A6-CD44+-ENaC signal cascade [J].
Ali, Gibran ;
Zhang, Mo ;
Zhao, Runzhen ;
Jain, Krishan G. ;
Chang, Jianjun ;
Komatsu, Satoshi ;
Zhou, Beiyun ;
Liang, Jiurong ;
Matthay, Michael A. ;
Ji, Hong-Long .
SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2021, 6 (01)
[2]   APID database: redefining protein-protein interaction experimental evidences and binary interactomes [J].
Alonso-Lopez, Diego ;
Campos-Laborie, Francisco J. ;
Gutierrez, Miguel A. ;
Lambourne, Luke ;
Calderwood, Michael A. ;
Vidal, Marc ;
De Las Rivas, Javier .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2019,
[3]  
[Anonymous], 2020, Safety, tolerability, & therapeutic potential of mtl-cebpa in covid-19
[4]  
[Anonymous], 2009, Kendall's Tau and Spearman's Rho for Zero Inflated Data
[5]   PeakVI: A deep generative model for single-cell chromatin accessibility analysis [J].
Ashuach, Tal ;
Reidenbach, Daniel A. ;
Gayoso, Adam ;
Yosef, Nir .
CELL REPORTS METHODS, 2022, 2 (03)
[6]  
Bates D, 2014, Arxiv, DOI [arXiv:1406.5823, 10.48550/arXiv.1406.5823, DOI 10.48550/ARXIV.1406.5823]
[7]   glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling [J].
Brooks, Mollie E. ;
Kristensen, Kasper ;
van Benthem, Koen J. ;
Magnusson, Arni ;
Berg, Casper W. ;
Nielsen, Anders ;
Skaug, Hans J. ;
Machler, Martin ;
Bolker, Benjamin M. .
R JOURNAL, 2017, 9 (02) :378-400
[8]   NicheNet: modeling intercellular communication by linking ligands to target genes [J].
Browaeys, Robin ;
Saelens, Wouter ;
Saeys, Yvan .
NATURE METHODS, 2020, 17 (02) :159-+
[9]   Single-cell chromatin accessibility reveals principles of regulatory variation [J].
Buenostro, Jason D. ;
Wu, Beijing ;
Litzenburger, Ulrike M. ;
Ruff, Dave ;
Gonzales, Michael L. ;
Snyder, Michael P. ;
Chang, Howard Y. ;
Greenleaf, William J. .
NATURE, 2015, 523 (7561) :486-U264
[10]  
Buenrostro Jason D, 2015, Curr Protoc Mol Biol, V109, DOI 10.1002/0471142727.mb2129s109