Dynamical Tunneling in More than Two Degrees of Freedom

被引:0
作者
Keshavamurthy, Srihari [1 ,2 ]
机构
[1] Indian Inst Technol, Dept Chem, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Sci, Inorgan & Phys Chem, Bengaluru 560012, India
关键词
dynamical tunneling; resonance-assisted tunneling; chaos-assisted tunneling; Hamiltonian systems; Arnold web; multidimensional phase space; INTRAMOLECULAR VIBRATIONAL-RELAXATION; TIME-FREQUENCY ANALYSIS; ARNOLD DIFFUSION; PHASE-SPACE; MULTIDIMENSIONAL SYSTEMS; INTERSECTING RESONANCES; QUANTUM ERGODICITY; ENERGY-FLOW; CHAOS; WEB;
D O I
10.3390/e26040333
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent progress towards understanding the mechanism of dynamical tunneling in Hamiltonian systems with three or more degrees of freedom (DoF) is reviewed. In contrast to systems with two degrees of freedom, the three or more degrees of freedom case presents several challenges. Specifically, in higher-dimensional phase spaces, multiple mechanisms for classical transport have significant implications for the evolution of initial quantum states. In this review, the importance of features on the Arnold web, a signature of systems with three or more DoF, to the mechanism of resonance-assisted tunneling is illustrated using select examples. These examples represent relevant models for phenomena such as intramolecular vibrational energy redistribution in isolated molecules and the dynamics of Bose-Einstein condensates trapped in optical lattices.
引用
收藏
页数:21
相关论文
共 119 条
[1]   Visualizing the phase space of the HeI2 van der Waals complex using Lagrangian descriptors [J].
Agaoglou, Makrina ;
Garcia-Garrido, Victor J. ;
Katsanikas, Matthaios ;
Wiggins, Stephen .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 103
[2]   Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction -: art. no. 010402 [J].
Albiez, M ;
Gati, R ;
Fölling, J ;
Hunsmann, S ;
Cristiani, M ;
Oberthaler, MK .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[3]   Chaos-assisted tunneling resonances in a synthetic Floquet superlattice [J].
Arnal, M. ;
Chatelain, G. ;
Martinez, M. ;
Dupont, N. ;
Giraud, O. ;
Ullmo, D. ;
Georgeot, B. ;
Lemarie, G. ;
Billy, J. ;
Guery-Odelin, D. .
SCIENCE ADVANCES, 2020, 6 (38)
[4]   INTERSECTING RESONANCES AS A ROUTE TO CHAOS - CLASSICAL AND QUANTUM STUDIES OF A 3-OSCILLATOR MODEL [J].
ATKINS, KM ;
LOGAN, DE .
PHYSICS LETTERS A, 1992, 162 (03) :255-262
[5]   Dynamical tunneling in mushroom billiards [J].
Baecker, A. ;
Ketzmerick, R. ;
Loeck, S. ;
Robnik, M. ;
Vidmar, G. ;
Hoehmann, R. ;
Kuhl, U. ;
Stoeckmann, H.-J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (17)
[6]   Sensitivity tools vs. Poincare sections [J].
Barrio, R .
CHAOS SOLITONS & FRACTALS, 2005, 25 (03) :711-726
[7]   Weak chaos in the disordered nonlinear Schrodinger chain: Destruction of Anderson localization by Arnold diffusion [J].
Basko, D. M. .
ANNALS OF PHYSICS, 2011, 326 (07) :1577-1655
[8]   MANIFESTATIONS OF CLASSICAL PHASE-SPACE STRUCTURES IN QUANTUM-MECHANICS [J].
BOHIGAS, O ;
TOMSOVIC, S ;
ULLMO, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 223 (02) :43-133
[9]   Arnold diffusion in a driven optical lattice [J].
Boretz, Yingyue ;
Reichl, L. E. .
PHYSICAL REVIEW E, 2016, 93 (03)
[10]   Resonance-assisted tunneling in near-integrable systems [J].
Brodier, O ;
Schlagheck, P ;
Ullmo, D .
PHYSICAL REVIEW LETTERS, 2001, 87 (06) :641011-641014