Composite activity type and stride-specific energy expenditure estimation model for thigh-worn accelerometry

被引:0
作者
Lendt, Claas [1 ,2 ]
Hansen, Niklas [1 ]
Froboese, Ingo [1 ]
Stewart, Tom [2 ]
机构
[1] German Sport Univ Cologne, Inst Movement Therapy & Movement oriented Prevent, Cologne, Germany
[2] Auckland Univ Technol, Human Potential Ctr, Sch Sport & Recreat, Auckland, New Zealand
关键词
Accelerometer; Activity classification; Human activity recognition; Machine learning; Prediction; Validation; ADULTS;
D O I
10.1186/s12966-024-01646-y
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
BackgroundAccurately measuring energy expenditure during physical activity outside of the laboratory is challenging, especially on a large scale. Thigh-worn accelerometers have gained popularity due to the possibility to accurately detect physical activity types. The use of machine learning techniques for activity classification and energy expenditure prediction may improve accuracy over current methods. Here, we developed a novel composite energy expenditure estimation model by combining an activity classification model with a stride specific energy expenditure model for walking, running, and cycling.MethodsWe first trained a supervised deep learning activity classification model using pooled data from available adult accelerometer datasets. The composite energy expenditure model was then developed and validated using additional data based on a sample of 69 healthy adult participants (49% female; age = 25.2 +/- 5.8 years) who completed a standardised activity protocol with indirect calorimetry as the reference measure.ResultsThe activity classification model showed an overall accuracy of 99.7% across all five activity types during validation. The composite model for estimating energy expenditure achieved a mean absolute percentage error of 10.9%. For running, walking, and cycling, the composite model achieved a mean absolute percentage error of 6.6%, 7.9% and 16.1%, respectively.ConclusionsThe integration of thigh-worn accelerometers with machine learning models provides a highly accurate method for classifying physical activity types and estimating energy expenditure. Our novel composite model approach improves the accuracy of energy expenditure measurements and supports better monitoring and assessment methods in non-laboratory settings.
引用
收藏
页数:11
相关论文
共 37 条
[21]   Sedentary behaviour and health in adults: an overview of systematic reviews [J].
Saunders, Travis J. ;
McIsaac, Travis ;
Douillette, Kevin ;
Gaulton, Nick ;
Hunter, Stephen ;
Rhodes, Ryan E. ;
Prince, Stephanie A. ;
Carson, Valerie ;
Chaput, Jean-Philippe ;
Chastin, Sebastien ;
Giangregorio, Lora ;
Janssen, Ian ;
Katzmarzyk, Peter T. ;
Kho, Michelle E. ;
Poitras, Veronica J. ;
Powell, Kenneth E. ;
Ross, Robert ;
Ross-White, Amanda ;
Tremblay, Mark S. ;
Healy, Genevieve N. .
APPLIED PHYSIOLOGY NUTRITION AND METABOLISM, 2020, 45 (10) :S197-S217
[22]  
Skovbjerg Frederik, 2022, JMIR Bioinform Biotechnol, V3, pe38512, DOI 10.2196/38512
[23]   Sensing leg movement enhances wearable monitoring of energy expenditure [J].
Slade, Patrick ;
Kochenderfer, Mykel J. ;
Delp, Scott L. ;
Collins, Steven H. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[24]   Emerging collaborative research platforms for the next generation of physical activity, sleep and exercise medicine guidelines: the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS) [J].
Stamatakis, Emmanuel ;
Koster, Annemarie ;
Hamer, Mark ;
Rangul, Vegar ;
Lee, I--Min ;
Bauman, Adrian E. ;
Atkin, Andrew J. ;
Aadahl, Mette ;
Matthews, Charles E. ;
Mork, Paul Jarle ;
Askie, Lisa ;
Cistulli, Peter ;
Granat, Malcolm ;
Palm, Peter ;
Crowley, Patrick Joseph ;
Stevens, Matthew ;
Gupta, Nidhi ;
Pulakka, Anna ;
Stenholm, Sari ;
Arvidsson, Daniel ;
Mishra, Gita ;
Wennberg, Patrik ;
Chastin, Sebastien ;
Ekelund, Ulf ;
Holtermann, Andreas .
BRITISH JOURNAL OF SPORTS MEDICINE, 2020, 54 (08) :435-437
[25]   Step detection and energy expenditure at different speeds by three accelerometers in a controlled environment [J].
Stenback, Ville ;
Leppaluoto, Juhani ;
Leskela, Nelli ;
Viitala, Linda ;
Vihriala, Erkki ;
Gagnon, Dominique ;
Tulppo, Mikko ;
Herzig, Karl-Heinz .
SCIENTIFIC REPORTS, 2021, 11 (01)
[26]   Thigh-worn accelerometry for measuring movement and posture across the 24-hour cycle: a scoping review and expert statement [J].
Stevens, Matthew L. ;
Gupta, Nidhi ;
Eroglu, Elif Inan ;
Crowley, Patrick Joseph ;
Eroglu, Barbaros ;
Bauman, Adrian ;
Granat, Malcolm ;
Straker, Leon ;
Palm, Peter ;
Stenholm, Sari ;
Aadahl, Mette ;
Mork, Paul ;
Chastin, Sebastien ;
Rangul, Vegar ;
Hamer, Mark ;
Koster, Annemarie ;
Holtermann, Andreas ;
Stamatakis, Emmanuel .
BMJ OPEN SPORT & EXERCISE MEDICINE, 2020, 6 (01)
[27]   A Dual-Accelerometer System for Classifying Physical Activity in Children and Adults [J].
Stewart, Tom ;
Narayanan, Anantha ;
Hedayatrad, Leila ;
Neville, Jonathon ;
MacKay, Lisa ;
Duncan, Scott .
MEDICINE & SCIENCE IN SPORTS & EXERCISE, 2018, 50 (12) :2595-2602
[28]   Quantifying the Relationship Between Physical Activity Energy Expenditure and Incident Type 2 Diabetes: A Prospective Cohort Study of Device-Measured Activity in 90,096 Adults [J].
Strain, Tessa ;
Dempsey, Paddy C. ;
Wijndaele, Katrien ;
Sharp, Stephen J. ;
Kerrison, Nicola ;
Gonzales, Tomas I. ;
Li, Chunxiao ;
Wheeler, Eleanor ;
Langenberg, Claudia ;
Brage, Soren ;
Wareham, Nick .
DIABETES CARE, 2023, 46 (06) :1145-1155
[29]   Gait on slopes: Differences in temporo-spatial, kinematic and kinetic gait parameters between walking on a ramp and on a treadmill [J].
Strutzenberger, Gerda ;
Leutgeb, Lara ;
Claussen, Lisa ;
Schwameder, Hermann .
GAIT & POSTURE, 2022, 91 :73-78
[30]   Machine learning-based glucose prediction with use of continuous glucose and physical activity monitoring data: The Maastricht Study [J].
van Doorn, William P. T. M. ;
Foreman, Yuri D. ;
Schaper, Nicolaas C. ;
Savelberg, Hans H. C. M. ;
Koster, Annemarie ;
van der Kallen, Carla J. H. ;
Wesselius, Anke ;
Schram, Miranda T. ;
Henry, Ronald M. A. ;
Dagnelie, Pieter C. ;
de Galan, Bastiaan E. ;
Bekers, Otto ;
Stehouwer, Coen D. A. ;
Meex, Steven J. R. ;
Brouwers, Martijn C. G. J. .
PLOS ONE, 2021, 16 (06)