Spectral structure of a class of self-similar spectral measures with product form digit sets

被引:0
作者
Jiang, Mingxuan [1 ]
Lu, Jian-Feng [1 ]
Wei, Sai-Di [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral measure; Self-similar measure; Orthonormal basis; Spectral structures; Spectral eigenvalue; FUGLEDES CONJECTURE; EIGENVALUE PROBLEMS; NUMBER; CONVOLUTIONS; TILES;
D O I
10.1007/s43037-024-00368-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} be a Borel probability measure with compact support on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document}, we say mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is a spectral measure if there exists a countable set Lambda subset of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda \subset {\mathbb {R}}$$\end{document} such that the collection of exponential functions E(Lambda):={e-2 pi i <lambda,x >:lambda is an element of Lambda}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\Lambda ):=\{e<^>{-2\pi i\langle \lambda , x\rangle }: \lambda \in \Lambda \}$$\end{document} forms an orthonormal basis for the Hilbert space L2(mu)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2(\mu )$$\end{document}. In this case, Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} is called a spectrum of mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}. In this paper, we first characterize the spectral structure of self-similar spectral measures mu t,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{t,D}$$\end{document} on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document}, where D is a strict product-form digit set with respect to an integer b and t is an integer which has a proper factor b. And then we settle the spectral eigenvalue (or scaling spectrum) problem for the spectral measure mu t,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{t,D}$$\end{document}.
引用
收藏
页数:35
相关论文
共 43 条
  • [1] An LX, 2022, INDIANA U MATH J, V71, P913
  • [2] On self-similar spectral measures
    An, Lixiang
    Wang, Cong
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (03)
  • [3] Spectrality of self-affine Sierpinski-type measures on R2
    Dai, Xin-Rong
    Fu, Xiao-Ye
    Yan, Zhi-Hui
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 52 (52) : 63 - 81
  • [4] Spectra of Cantor measures
    Dai, Xin-Rong
    [J]. MATHEMATISCHE ANNALEN, 2016, 366 (3-4) : 1621 - 1647
  • [5] On spectral N-Bernoulli measures
    Dai, Xin-Rong
    He, Xing-Gang
    Lau, Ka-Sing
    [J]. ADVANCES IN MATHEMATICS, 2014, 259 : 511 - 531
  • [6] Spectral property of Cantor measures with consecutive digits
    Dai, Xin-Rong
    He, Xing-Gang
    Lai, Chun-Kit
    [J]. ADVANCES IN MATHEMATICS, 2013, 242 : 187 - 208
  • [7] When does a Bernoulli convolution admit a spectrum?
    Dai, Xin-Rong
    [J]. ADVANCES IN MATHEMATICS, 2012, 231 (3-4) : 1681 - 1693
  • [8] On the Spectra of Self-Affine Measures with Three Digits
    Deng, Q. -R.
    Wang, X. -Y.
    [J]. ANALYSIS MATHEMATICA, 2019, 45 (02) : 267 - 289
  • [9] Tree structure of spectra of spectral self-affine measures
    Deng, Qi-Rong
    Dong, Xin-Han
    Li, Ming-Tian
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (03) : 937 - 957
  • [10] HADAMARD TRIPLES GENERATE SELF-AFFINE SPECTRAL MEASURES
    Dutkay, Dorin Ervin
    Haussermann, John
    Lai, Chun-Kit
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (02) : 1439 - 1481