Characterising trees and hyperbolic spaces by their boundaries

被引:0
作者
Davies, Isobel [1 ]
机构
[1] Otto von Guericke Univ, Univ Pl 2, D-39106 Magdeburg, Germany
关键词
trees; hyperbolic spaces; cross ratio; proper CAT(-1) spaces; visual boundary;
D O I
10.1007/s00022-024-00726-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the language of proper CAT(-1) spaces to study thick, locally compact trees, the real, complex and quaternionic hyperbolic spaces and the hyperbolic plane over the octonions. These are rank 1 Euclidean buildings, respectively rank 1 symmetric spaces of non-compact type. We give a uniform proof that these spaces may be reconstructed using the cross ratio on their visual boundary, bringing together the work of Tits and Bourdon.
引用
收藏
页数:17
相关论文
共 12 条
[1]  
Abramenko P, 2010, BUILDINGS
[2]   Reflection groups on the octave hyperbolic plane [J].
Allcock, D .
JOURNAL OF ALGEBRA, 1999, 213 (02) :467-498
[3]   Identifying models of the octave projective plane [J].
Allcock, D .
GEOMETRIAE DEDICATA, 1997, 65 (02) :215-217
[4]  
BOURDON M, 1996, I HAUTES ETUDES SCI, V83, P95
[5]  
Bourdon M, 1995, LEnseign. Math, V2, P63
[6]  
Bridson Martin R., 1999, GRUNDLEHREN MATH WIS, V319, DOI [10.1007/978-3-662-12494-9, DOI 10.1007/978-3-662-12494-9]
[7]  
Buyalo S., 2007, Elements of Asymptotic Geometry, DOI [10.4171/036, DOI 10.4171/036]
[8]  
EBERLEIN P, 1996, GEOMETRY NONPOSITIVE
[9]   Hyperbolicity, CAT(-1)-spaces and the Ptolemy inequality [J].
Foertsch, Thomas ;
Schroeder, Viktor .
MATHEMATISCHE ANNALEN, 2011, 350 (02) :339-356
[10]  
Mostow GD., 1974, Strong Rigidity of Locally Symmetric Spaces, DOI [10.1515/9781400881833, DOI 10.1515/9781400881833]