Weak shock compaction on granular salt

被引:2
|
作者
Seo, Dawa [1 ]
Heatwole, Eric M. [2 ]
Feagin, Trevor A. [2 ]
Lopez-Pulliam, Ian D. [2 ]
Luscher, Darby J. [3 ]
Koskelo, Aaron [3 ]
Kenamond, Mack [3 ]
Rousculp, Christopher [3 ]
Ticknor, Christopher [1 ]
Scovel, Christina [4 ]
Daphalapurkar, Nitin P. [1 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, POB 1663, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Dynam Expt Div, POB 1663, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, X Computat Phys Div, POB 1663, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, X Theoret Design Div, POB 1663, Los Alamos, NM 87545 USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Weak shock compaction; Granular materials; Force chain; Salt; Mesoscale; POWDER; SIMULATIONS; STRENGTH; MODEL;
D O I
10.1038/s41598-024-67652-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study conducted integrated experiments and computational modeling to investigate the speeds of a developing shock within granular salt and analyzed the effect of various impact velocities up to 245 m/s. Experiments were conducted on table salt utilizing a novel setup with a considerable bore length for the sample, enabling visualization of a moving shock wave. Experimental analysis using particle image velocimetry enabled the characterization of shock velocity and particle velocity histories. Mesoscale simulations further enabled advanced analysis of the shock wave's substructure. In simulations, the shock front's precursor was shown to have a heterogeneous nature, which is usually modeled as uniform in continuum analyses. The presence of force chains results in a spread out of the shock precursor over a greater ramp distance. With increasing impact velocity, the shock front thickness reduces, and the precursor of the shock front becomes less heterogeneous. Furthermore, mesoscale modeling suggests the formation of force chains behind the shock front, even under the conditions of weak shock. This study presents novel mesoscale simulation results on salt corroborated with data from experiments, thereby characterizing the compaction front speeds in the weak shock regime.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Slow relaxation in granular compaction
    Ben-Naim, E
    Knight, JB
    Nowak, ER
    Jaeger, HM
    Nagel, SR
    PHYSICA D, 1998, 123 (1-4): : 380 - 385
  • [22] Compaction of a granular packing with a lubricant
    Pitois, O
    Moucheront, P
    Weill, C
    Roux, JN
    POWDERS & GRAINS 97, 1997, : 37 - 40
  • [23] Impact Compaction of a Granular Material
    Fenton, Gregg
    Asay, Blaine
    Dalton, Devon
    PROCEEDINGS OF THE 2015 HYPERVELOCITY IMPACT SYMPOSIUM (HVIS 2015), 2015, 103 : 121 - 128
  • [24] DYNAMIC COMPACTION OF GRANULAR SOILS
    LEONARDS, GA
    CUTTER, WA
    HOLTZ, RD
    JOURNAL OF THE GEOTECHNICAL ENGINEERING DIVISION-ASCE, 1980, 106 (01): : 35 - 44
  • [25] Spectral responses in granular compaction
    Zou, Ling-Nan
    PHYSICAL REVIEW E, 2010, 81 (03):
  • [26] Compaction waves in granular HMX
    Menikoff, R
    Kober, E
    SHOCK COMPRESSION OF CONDENSED MATTER-1999, PTS 1 AND 2, 2000, 505 : 397 - 400
  • [27] Deep compaction of granular soils
    Massarsch, KR
    LOOK BACK FOR FUTURE GEOTECHNICS, 2001, : 181 - 223
  • [28] Glassy dynamics in granular compaction
    Mehta, A
    Barker, GC
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (29) : 6619 - 6628
  • [29] Dynamic compaction of granular materials
    Favrie, N.
    Gavrilyuk, S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2160):
  • [30] Granular compaction under confinement
    Mueggenburg, Nathan
    PHYSICAL REVIEW E, 2012, 85 (04):