Characterisation and modelling of potassium-ion batteries

被引:6
|
作者
Dhir, Shobhan [1 ]
Cattermull, John [1 ,2 ]
Jagger, Ben [1 ]
Schart, Maximilian [1 ]
Olbrich, Lorenz F. [1 ]
Chen, Yifan [1 ]
Zhao, Junyi [1 ]
Sada, Krishnakanth [1 ]
Goodwin, Andrew [2 ]
Pasta, Mauro [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Univ Oxford, Dept Chem, Inorgan Chem Lab, Oxford OX1 3PH, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
PRUSSIAN BLUE ANALOGS; ELECTROCHEMICAL IMPEDANCE; PHYSICOCHEMICAL MODEL; TRANSPORT-PROPERTIES; DIFFUSION-COEFFICIENTS; LITHIUM DIFFUSION; GRAPHITE; INTERCALATION; ELECTRODES; PARAMETERIZATION;
D O I
10.1038/s41467-024-51537-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Potassium-ion batteries (KIBs) are emerging as a promising alternative technology to lithium-ion batteries (LIBs) due to their significantly reduced dependency on critical minerals. KIBs may also present an opportunity for superior fast-charging compared to LIBs, with significantly faster K-ion electrolyte transport properties already demonstrated. In the absence of a viable K-ion electrolyte, a full-cell KIB rate model in commercial cell formats is required to determine the fast-charging potential for KIBs. However, a thorough and accurate characterisation of the critical electrode material properties determining rate performance-the solid state diffusivity and exchange current density-has not yet been conducted for the leading KIB electrode materials. Here, we accurately characterise the effective solid state diffusivities and exchange current densities of the graphite negative electrode and potassium manganese hexacyanoferrate K2Mn[Fe(CN)6]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{\rm{K}}}}}_{2}{{{\rm{Mn}}}}[{{{\rm{Fe}}}}{({{{\rm{CN}}}})}_{6}]$$\end{document} (KMF) positive electrode, through a combination of optimised material design and state-of-the-art analysis. Finally, we present a Doyle-Fuller-Newman model of a KIB full cell with realistic geometry and loadings, identifying the critical materials properties that limit their rate capability. Potassium-ion batteries are a promising alternative to lithium-ion batteries. Here, authors characterise the solid-state diffusivities and exchange current densities of leading negative and positive electrode materials, enabling full-cell modelling to identify the properties limiting rate capability.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Polyanionic Compounds for Potassium-Ion Batteries
    Hosaka, Tomooki
    Shimamura, Tomoaki
    Kubota, Kei
    Komaba, Shinichi
    CHEMICAL RECORD, 2019, 19 (04): : 735 - 745
  • [2] Flexible nanostructured potassium-ion batteries
    Huang, Sheng-Bor
    Hsieh, Yi-Yen
    Chen, Kuan-Ting
    Tuan, Hsing-Yu
    CHEMICAL ENGINEERING JOURNAL, 2021, 416 (416)
  • [3] 2023 roadmap for potassium-ion batteries
    Xu, Yang
    Titirici, Magda
    Chen, Jingwei
    Cora, Furio
    Cullen, Patrick L.
    Edge, Jacqueline Sophie
    Fan, Kun
    Fan, Ling
    Feng, Jingyu
    Hosaka, Tomooki
    Hu, Junyang
    Huang, Weiwei
    Hyde, Timothy, I
    Imtiaz, Sumair
    Kang, Feiyu
    Kennedy, Tadhg
    Kim, Eun Jeong
    Komaba, Shinichi
    Lander, Laura
    Le Pham, Phuong Nam
    Liu, Pengcheng
    Lu, Bingan
    Meng, Fanlu
    Mitlin, David
    Monconduit, Laure
    Palgrave, Robert G.
    Qin, Lei
    Ryan, Kevin M.
    Sankar, Gopinathan
    Scanlon, David O.
    Shi, Tianyi
    Stievano, Lorenzo
    Tinker, Henry R.
    Wang, Chengliang
    Wang, Hang
    Wang, Huanlei
    Wu, Yiying
    Zhai, Dengyun
    Zhang, Qichun
    Zhou, Min
    Zou, Jincheng
    JOURNAL OF PHYSICS-ENERGY, 2023, 5 (02):
  • [4] Potassium Difluorophosphate as an Electrolyte Additive for Potassium-Ion Batteries
    Yang, Huan
    Chen, Chih-Yao
    Hwang, Jinkwang
    Kubota, Keigo
    Matsumoto, Kazuhiko
    Hagiwara, Rika
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (32) : 36168 - 36176
  • [5] β-FeOOH: a new anode for potassium-ion batteries
    Shi, Xiaodong
    Qin, Liping
    Xu, Guofu
    Guo, Shan
    Ma, Shuci
    Zhao, Yunxiang
    Zhou, Jiang
    Liang, Shuquan
    CHEMICAL COMMUNICATIONS, 2020, 56 (26) : 3713 - 3716
  • [6] Recent Advances in Electrolytes for Potassium-Ion Batteries
    Xu, Yifan
    Ding, Tangjing
    Sun, Dongmei
    Ji, Xiulei
    Zhou, Xiaosi
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (06)
  • [7] Nonfluorinated Antisolvents for Ultrastable Potassium-Ion Batteries
    Wen, Jie
    Fu, Hongwei
    Zhang, Dianwei
    Ma, Xuemei
    Wu, Lichen
    Fan, Ling
    Yu, Xinzhi
    Zhou, Jiang
    Lu, Bingan
    ACS NANO, 2023, 17 (16) : 16135 - 16146
  • [8] Tungsten chalcogenides as anodes for potassium-ion batteries
    Wu, Yu-Han
    Xia, Wei-Hao
    Liu, Yun-Zhuo
    Wang, Peng-Fei
    Zhang, Yu-Hang
    Huang, Jin-Ru
    Xu, Yang
    Li, De-Ping
    Ci, Li-Jie
    TUNGSTEN, 2024, 6 (02) : 278 - 292
  • [9] Comprehensive Insights into Aqueous Potassium-Ion Batteries
    Xia, Maoting
    Zhou, Jiang
    Lu, Bingan
    ADVANCED ENERGY MATERIALS, 2024,
  • [10] Tungsten chalcogenides as anodes for potassium-ion batteries
    Yu-Han Wu
    Wei-Hao Xia
    Yun-Zhuo Liu
    Peng-Fei Wang
    Yu-Hang Zhang
    Jin-Ru Huang
    Yang Xu
    De-Ping Li
    Li-Jie Ci
    Tungsten, 2024, 6 : 278 - 292