High-temperature capacitive energy stroage in polymer nanocomposites through nanoconfinement

被引:14
|
作者
Li, Xinhui [1 ,2 ]
Liu, Bo [1 ,2 ]
Wang, Jian [1 ,2 ]
Li, Shuxuan [1 ,2 ]
Zhen, Xin [1 ,2 ]
Zhi, Jiapeng [1 ,2 ]
Zou, Junjie [1 ,2 ]
Li, Bei [1 ,2 ]
Shen, Zhonghui [1 ,2 ]
Zhang, Xin [1 ,2 ]
Zhang, Shujun [3 ]
Nan, Ce-Wen [4 ]
机构
[1] Wuhan Univ Technol, Ctr Smart Mat & Devices, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Int Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Fac Engn & Informat Sci, N Wollongong, NSW 2522, Australia
[4] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
GLASS-TRANSITION; CHARGE-TRANSPORT; DENSITY; DIELECTRICS; SIMULATION; DYNAMICS; STRENGTH; MODEL; FILMS;
D O I
10.1038/s41467-024-51052-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polymeric-based dielectric materials hold great potential as energy storage media in electrostatic capacitors. However, the inferior thermal resistance of polymers leads to severely degraded dielectric energy storage capabilities at elevated temperatures, limiting their applications in harsh environments. Here we present a flexible laminated polymer nanocomposite where the polymer component is confined at the nanoscale, achieving improved thermal-mechanical-electrical stability within the resulting nanocomposite. The nanolaminate, consisting of nanoconfined polyetherimide (PEI) polymer sandwiched between solid Al2O3 layers, exhibits a high energy density of 18.9 J/cm(3) with a high energy efficiency of similar to 91% at elevated temperature of 200 degrees C. Our work demonstrates that nanoconfinement of PEI polymer results in reduced diffusion coefficient and constrained thermal dynamics, leading to a remarkable increase of 37 degrees C in glass-transition temperature compared to bulk PEI polymer. The combined effects of nanoconfinement and interfacial trapping within the nanolaminates synergistically contribute to improved electrical breakdown strength and enhanced energy storage performance across temperature range up to 250 degrees C. By utilizing the flexible ultrathin nanolaminate on curved surfaces such as thin metal wires, we introduce an innovative concept that enables the creation of a highly efficient and compact metal-wired capacitor, achieving substantial capacitance despite the minimal device volume.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Bioinspired Polymer Nanocomposites Exhibit Giant Energy Density and High Efficiency at High Temperature
    Xu, Wenhan
    Liu, Jie
    Chen, Tianwu
    Jiang, Xiangyu
    Qian, Xiaoshi
    Zhang, Yu
    Jiang, Zhenhua
    Zhang, Yunhe
    SMALL, 2019, 15 (28)
  • [32] A review on boron nitride reinforced polyimide-based nanocomposites for high-temperature capacitive energy storage: Challenges and recommendations
    Ogbonna, Victor E.
    Popoola, Olawale M.
    Popoola, Patricia, I
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2025,
  • [33] Polymer Dielectrics and Their Nanocomposites for Capacitive Energy Storage Applications
    Cheng, Sang
    Li, Yu-shu
    Liang, Jia-jie
    Li, Qi
    ACTA POLYMERICA SINICA, 2020, 51 (05): : 469 - 483
  • [34] Physical crosslinking optimized high-temperature capacitive energy storage of polyetherimide nanocomposites with ultralow C60 particles
    Huang, Wenjie
    Xiao, Mengyu
    Wan, Baoquan
    Xiang, Zhonghua
    Li, Yuchao
    Jung, Yong Chae
    Zha, Jun-Wei
    COMPOSITES SCIENCE AND TECHNOLOGY, 2025, 267
  • [35] Polymer nanocomposites: Interfacial properties and capacitive energy storage
    Drakopoulos, Stavros X.
    Wu, Jiaen
    Maguire, Shawn M.
    Srinivasan, Sneha
    Randazzo, Katelyn
    Davidson, Emily C.
    Priestley, Rodney D.
    PROGRESS IN POLYMER SCIENCE, 2024, 156
  • [36] Polymer dielectrics for high-temperature energy storage: Constructing carrier traps
    Zha, Jun -Wei
    Xiao, Mengyu
    Wan, Baoquan
    Wang, Xinmo
    Dang, Zhi-Min
    Chen, George
    PROGRESS IN MATERIALS SCIENCE, 2023, 140
  • [37] Anisotropic Semicrystalline Homopolymer Dielectrics for High-Temperature Capacitive Energy Storage
    Xu, Wenhan
    Zhou, Chenyi
    Ji, Wenhai
    Zhang, Yunhe
    Jiang, Zhenhua
    Bertram, Florian
    Shang, Yingshuang
    Zhang, Haibo
    Shen, Chen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (24)
  • [38] Electrostatic interaction bridges the charge transport kinetics and high-temperature capacitive energy storage performance of polymer dielectrics
    Yang, Minhao
    Zhao, Yanlong
    Yan, Huarui
    Wang, Zepeng
    Xu, Chao
    Zhang, Chong
    Bilotti, Emiliano
    Li, Jianying
    Dang, Zhi-Min
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (20) : 7627 - 7648
  • [39] Polyimide nanocomposites for high-temperature capacitive energy storage applications by incorporating functional graphene oxide nanosheets: Design, preparation, and mechanism
    Ni, Ke Yang
    Zhang, Zhao Xin
    Zhang, Ai Ping
    Bian, Jun
    Li, Xin Kang
    Wei, Cong
    Lin, Hai Lan
    Chen, Dai Qiang
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (30)
  • [40] Nanofiber-reinforced polymer nanocomposite with hierarchical interfaces for high-temperature dielectric energy storage applications
    Zhi, Jiapeng
    Wang, Jian
    Shen, Zhonghui
    Li, Baowen
    Zhang, Xin
    Nan, Ce-Wen
    SCIENCE CHINA-MATERIALS, 2023, 66 (07) : 2652 - 2661