Automated Knowledge Distillation via Monte Carlo Tree Search

被引:14
|
作者
Li, Lujun [1 ]
Dong, Peijie [2 ]
Wei, Zimian [2 ]
Yang, Ya [3 ]
机构
[1] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
[2] Natl Univ Def Technol, Changsha, Peoples R China
[3] City Univ Hong Kong, Hong Kong, Peoples R China
来源
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023) | 2023年
关键词
D O I
10.1109/ICCV51070.2023.01597
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present Auto-KD, the first automated search framework for optimal knowledge distillation design. Traditional distillation techniques typically require handcrafted designs by experts and extensive tuning costs for different teacher-student pairs. To address these issues, we empirically study different distillers, finding that they can be decomposed, combined, and simplified. Based on these observations, we build our uniform search space with advanced operations in transformations, distance functions, and hyperparameters components. For instance, the transformation parts are optional for global, intra-spatial, and inter-spatial operations, such as attention, mask, and multi-scale. Then, we introduce an effective search strategy based on the Monte Carlo tree search, modeling the search space as a Monte Carlo Tree (MCT) to capture the dependency among options. The MCT is updated using test loss and representation gap of student trained by candidate distillers as the reward for better exploration-exploitation balance. To accelerate the search process, we exploit offline processing without teacher inference, sparse training for student, and proxy settings based on distillation properties. In this way, our Auto-KD only needs small costs to search for optimal distillers before the distillation phase. Moreover, we expand Auto-KD for multi-layer and multi-teacher scenarios with training-free weighted factors. Our method is promising yet practical, and extensive experiments demonstrate that it generalizes well to different CNNs and Vision Transformer models and attains state-of-the-art performance across a range of vision tasks, including image classification, object detection, and semantic segmentation. Code is provided at https://github.com/lilujunai/Auto-KD.
引用
收藏
页码:17367 / 17378
页数:12
相关论文
共 50 条
  • [31] Nonasymptotic Analysis of Monte Carlo Tree Search
    Shah, Devavrat
    Xie, Qiaomin
    Xu, Zhi
    OPERATIONS RESEARCH, 2022, 70 (06) : 3234 - 3260
  • [32] Optimal state space reconstruction via Monte Carlo decision tree search
    Kraemer, K. Hauke
    Gelbrecht, Maximilian
    Pavithran, Induja
    Sujith, R., I
    Marwan, Norbert
    NONLINEAR DYNAMICS, 2022, 108 (02) : 1525 - 1545
  • [33] On Monte Carlo Tree Search and Reinforcement Learning
    Vodopivec, Tom
    Samothrakis, Spyridon
    Ster, Branko
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2017, 60 : 881 - 936
  • [34] Information Set Monte Carlo Tree Search
    Cowling, Peter I.
    Powley, Edward J.
    Whitehouse, Daniel
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2012, 4 (02) : 120 - 143
  • [35] State Aggregation in Monte Carlo Tree Search
    Hostetler, Jesse
    Fern, Alan
    Dietterich, Tom
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 2446 - 2452
  • [36] Monte Carlo Tree Search with Robust Exploration
    Imagawa, Takahisa
    Kaneko, Tomoyuki
    COMPUTERS AND GAMES, CG 2016, 2016, 10068 : 34 - 46
  • [37] Multiple Pass Monte Carlo Tree Search
    McGuinness, Cameron
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 1555 - 1561
  • [38] Monte Carlo Tree Search for Love Letter
    Omarov, Tamirlan
    Aslam, Hamna
    Brown, Joseph Alexander
    Reading, Elizabeth
    19TH INTERNATIONAL CONFERENCE ON INTELLIGENT GAMES AND SIMULATION (GAME-ON(R) 2018), 2018, : 10 - 15
  • [39] Playing Carcassonne with Monte Carlo Tree Search
    Ameneyro, Fred Valdez
    Galvan, Edgar
    Fernando, Angel
    Morales, Kuri
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2343 - 2350
  • [40] Learning in POMDPs with Monte Carlo Tree Search
    Katt, Sammie
    Oliehoek, Frans A.
    Amato, Christopher
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70