Immobilization Behavior and Mechanism of Cd2+ by Sulfate-Reducing Bacteria in Anoxic Environments

被引:1
|
作者
Liao, Lang [1 ]
Li, Qian [1 ]
Yang, Yongbin [1 ]
Xu, Rui [1 ,2 ]
Zhang, Yan [1 ]
机构
[1] Cent South Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Environm Sci & Engn, Kunming 650500, Peoples R China
关键词
sulfate-reducing bacteria; Cd2+; anoxic environment; immobilized mechanism; HEAVY-METAL PRECIPITATION; ACID-MINE DRAINAGE; REMOVAL; BIOREMEDIATION;
D O I
10.3390/w16081086
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
It is vital to remove cadmium from wastewater because of its potential harm to the natural environment and human health. It was found that sulfate-reducing bacteria (SRB) had a good fixing effect on Cd under a strict anaerobic environment. However, there are few reports on the immobilization effect and mechanism of SRB on Cd in an anoxic environment. This study revealed the effects of initial Cd2+ concentration, initial SO42- concentration, temperature, pH, and C/N ratio on the immobilization of Cd2+ by SRB in aqueous solution under an anoxic environment. The experimental results showed that under the conditions of initial concentration of Cd2+ within 0 mg/L similar to 30 mg/L, initial concentration of SO42- within 1200 mg/L, temperature within 25 degrees C similar to 35 degrees C, pH neutral, and C/N ratio of 20:1, the immobilization rate of Cd2+ by SRB is above 90%. The characterization results showed that bioadsorption and chemical precipitation were the main mechanisms of SRB immobilization of Cd2+ in an anoxic environment.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] SULFATE-REDUCING BACTERIA AND IMMOBILIZATION OF METALS
    PERRY, KA
    MARINE GEORESOURCES & GEOTECHNOLOGY, 1995, 13 (1-2) : 33 - 39
  • [2] Sulfate-reducing bacteria
    Hao, OJ
    Chen, JM
    Huang, L
    Buglass, RL
    CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 1996, 26 (02) : 155 - 187
  • [3] Advances in heavy metal removal by sulfate-reducing bacteria
    Xu, Ya-Nan
    Chen, Yinguang
    WATER SCIENCE AND TECHNOLOGY, 2020, 81 (09) : 1797 - 1827
  • [4] Mine tailings remediation via sulfate-reducing bacteria and iron-reducing bacteria: heavy metals immobilization and biological sealing
    Zhang, Mingjiang
    Wang, Jianlei
    Liu, Xingyu
    Lv, Ying
    Yu, Bingbing
    Gao, Bowen
    Yan, Xiao
    CHEMISTRY AND ECOLOGY, 2022, 38 (08) : 706 - 719
  • [5] Effect of Fe(III) on the biotreatment of bioleaching solutions using sulfate-reducing bacteria
    Cao, Junya
    Li, Yuanyuan
    Zhang, Guangji
    Yang, Chao
    Cao, Xiaoya
    INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 2013, 125 : 27 - 33
  • [6] The behavior of sulfate-reducing bacteria in acidogenic phase of anaerobic digestion
    Mizuno, O
    Li, YY
    Noike, T
    WATER RESEARCH, 1998, 32 (05) : 1626 - 1634
  • [7] Treatment of Acid Mine Drainage (AMD) by Sulfate-Reducing Bacteria
    Qiu, Ting-Sheng
    Zhong, Chang-Ming
    Peng, Yan-Ping
    Wang, Ping
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [8] Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel
    Kuang, Fei
    Wang, Jia
    Yan, Li
    Zhang, Dun
    ELECTROCHIMICA ACTA, 2007, 52 (20) : 6084 - 6088
  • [9] Metabolic flexibility of sulfate-reducing bacteria
    Plugge, Caroline M.
    Zhang, Weiwen
    Scholten, Johannes C. M.
    Stams, Alfons J. M.
    FRONTIERS IN MICROBIOLOGY, 2011, 2
  • [10] Oxygen defense in sulfate-reducing bacteria
    Dolla, Alain
    Fournier, Marjorie
    Dermoun, Zorah
    JOURNAL OF BIOTECHNOLOGY, 2006, 126 (01) : 87 - 100