Multi-resolution analysis enables fidelity-ensured deconvolution for fluorescence microscopy

被引:11
作者
Hou, Yiwei [1 ,2 ]
Wang, Wenyi [1 ,2 ,3 ]
Fu, Yunzhe [1 ,2 ]
Ge, Xichuan [3 ]
Li, Meiqi [4 ]
Xi, Peng [1 ,2 ]
机构
[1] Peking Univ, Coll Future Technol, Dept Biomed Engn, Beijing 100871, Peoples R China
[2] Peking Univ, Natl Biomed Imaging Ctr, Beijing 100871, Peoples R China
[3] Airy Technol Co Ltd, Beijing 100086, Peoples R China
[4] Peking Univ, Sch Life Sci, Beijing 100871, Peoples R China
来源
ELIGHT | 2024年 / 4卷 / 01期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Fluorescence microscopy; Super-resolution imaging; Deconvolution; RESOLUTION LIMIT; WAVELET; DECOMPOSITION; TRANSFORM; RECONSTRUCTION; ALGORITHM; EMISSION; IMAGES;
D O I
10.1186/s43593-024-00073-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fluorescence microscopic imaging is essentially a convolution process distorted by random noise, limiting critical parameters such as imaging speed, duration, and resolution. Though algorithmic compensation has shown great potential to enhance these pivotal aspects, its fidelity remains questioned. Here we develop a physics-rooted computational resolution extension and denoising method with ensured fidelity. Our approach employs a multi-resolution analysis (MRA) framework to extract the two main characteristics of fluorescence images against noise: across-edge contrast, and along-edge continuity. By constraining the two features in a model-solution framework using framelet and curvelet, we develop MRA deconvolution algorithms, which improve the signal-to-noise ratio (SNR) up to 10 dB higher than spatial derivative based penalties, and can provide up to two-fold fidelity-ensured resolution improvement rather than the artifact-prone Richardson-Lucy inference. We demonstrate our methods can improve the performance of various diffraction-limited and super-resolution microscopies with ensured fidelity, enabling accomplishments of more challenging imaging tasks.
引用
收藏
页数:18
相关论文
共 57 条
[1]   Event-triggered STED imaging [J].
Alvelid, Jonatan ;
Damenti, Martina ;
Sgattoni, Chiara ;
Testa, Ilaria .
NATURE METHODS, 2022, 19 (10) :1268-+
[2]  
[Anonymous], 2005, IEEE INT C IMAGE PRO
[3]   Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification [J].
Arganda-Carreras, Ignacio ;
Kaynig, Verena ;
Rueden, Curtis ;
Eliceiri, Kevin W. ;
Schindelin, Johannes ;
Cardona, Albert ;
Seung, H. Sebastian .
BIOINFORMATICS, 2017, 33 (15) :2424-2426
[4]   Spatially adaptive wavelet-based multiscale image restoration [J].
Banham, MR ;
Katsaggelos, AK .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (04) :619-634
[5]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[6]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[7]   Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer [J].
Bredfeldt, Jeremy S. ;
Liu, Yuming ;
Pehlke, Carolyn A. ;
Conklin, Matthew W. ;
Szulczewski, Joseph M. ;
Inman, David R. ;
Keely, Patricia J. ;
Nowak, Robert D. ;
Mackie, Thomas R. ;
Eliceiri, Kevin W. .
JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (01)
[8]   Framelet-Based Blind Motion Deblurring From a Single Image [J].
Cai, Jian-Feng ;
Ji, Hui ;
Liu, Chaoqiang ;
Shen, Zuowei .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (02) :562-572
[9]   New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities [J].
Candès, EJ ;
Donoho, DL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (02) :219-266
[10]   Fast discrete curvelet transforms [J].
Candes, Emmanuel ;
Demanet, Laurent ;
Donoho, David ;
Ying, Lexing .
MULTISCALE MODELING & SIMULATION, 2006, 5 (03) :861-899