Effects of Fe3O4 magnetic nanoparticles on nitrate removal efficiency: an optimization study using response surface methodology

被引:0
|
作者
Demir, Ozlem [1 ,2 ]
Firat, Betul [2 ,3 ]
机构
[1] Harran Univ, Engn Fac, Environm Engn Dept, Sanliurfa, Turkiye
[2] Harran Univ, GAP Renewable Energy & Energy Efficiency Ctr, Osmanbey Campus, TR-63000 Sanliurfa, Turkiye
[3] Harran Univ, Grad Sch Nat & Appl Sci, Sanliurfa, Turkiye
关键词
adsorption; Box-Behnken statistical design program; Fe3O4; nanoparticle; iron oxide; nitrate removal; AQUEOUS-SOLUTIONS; REDUCTION; MECHANISM; COPPER; WATER;
D O I
10.2166/wpt.2024.093
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The nitrate contamination of water resources is a serious environmental problem, which may be solved by nitrate sorption onto magnetic nanoparticles. In this study, the effects of Fe3O4 magnetic nanoparticles on nitrate removal were investigated. Fe3O4 was synthesized by a co-precipitation method and used as an adsorbent for nitrate removal. pH, adsorbent dosage, and contact time were considered as the main variables. The effective ranges of these variables were chosen as pH = 4-10, adsorbent dose = 0.5-1.5 g/L, and contact time = 30-90 min. The optimization study was conducted using the Box-Behnken statistical design method. According to the analysis of variance table, it can be concluded that the model is 'significant' and the value of R2 was 0.99. The results of the study show that the maximum nitrate removal efficiency was about 91.02%. This was obtained at pH 7, using a dose of 1.3 g/Lof Fe3O4, and a contact time of 28 min. HIGHLIGHTS It is a nitrate removal study. It is an optimization study. It includes nanoparticles.
引用
收藏
页码:2306 / 2317
页数:12
相关论文
共 50 条
  • [1] Methylene Blue Adsorption by Fe3O4 Nanoparticles: An Optimization Study Using Response Surface Methodology
    Gritli, Imene
    Chemingui, Hajer
    Djebali, Kais
    Mabrouk, Walid
    Hafiane, Amor
    Marzouki, Riadh
    Ammar, Salah
    Chtourou, Radhouane
    Keshk, Sherif M. A. S.
    CHEMICAL ENGINEERING & TECHNOLOGY, 2024, 47 (10)
  • [2] Response surface methodology for the optimization of lanthanum removal from an aqueous solution using a Fe3O4/chitosan nanocomposite
    Haldorai, Yuvaraj
    Rengaraj, Arunkumar
    Ryu, Taegong
    Shin, Junho
    Huh, Yun Suk
    Han, Young-Kyu
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2015, 195 : 20 - 29
  • [3] Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal
    Iconaru, Simona Liliana
    Guegan, Regis
    Popa, Cristina Liana
    Motelica-Heino, Mikael
    Ciobanu, Carmen Steluta
    Predoi, Daniela
    APPLIED CLAY SCIENCE, 2016, 134 : 128 - 135
  • [4] Synthesis and optimization of the sonochemical method for functionalizing gold shell on Fe3O4 core nanoparticles using response surface methodology
    Dheyab, Mohammed Ali
    Aziz, Azlan Abdul
    Jameel, Mahmood S.
    SURFACES AND INTERFACES, 2020, 21
  • [5] Rapid Adsorption of Heavy Metals by Fe3O4/Talc Nanocomposite and Optimization Study Using Response Surface Methodology
    Kalantari, Katayoon
    Ahmad, Mansor B.
    Masoumi, Hamid Reza Fard
    Shameli, Kamyar
    Basri, Mahiran
    Khandanlou, Roshanak
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (07): : 12913 - 12927
  • [6] Removal and reuse of Ag nanoparticles by magnetic polyaniline/Fe3O4 nanofibers
    Yang, Qi
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (12) : 8901 - 8908
  • [7] Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal
    Feng, Liyun
    Cao, Minhua
    Ma, Xiaoyu
    Zhu, Yongshuang
    Hu, Changwen
    JOURNAL OF HAZARDOUS MATERIALS, 2012, 217 : 439 - 446
  • [8] Removal of Hg2+with Polypyrrole-Functionalized Fe3O4/Kaolin: Synthesis, Performance and Optimization with Response Surface Methodology
    Lin, Zhenfeng
    Pan, Ziwei
    Zhao, Yuhao
    Qian, Lin
    Shen, Jingtao
    Xia, Kai
    Guo, Yongfu
    Qu, Zan
    NANOMATERIALS, 2020, 10 (07) : 1 - 23
  • [9] Removal of As(V) from aqueous solution using modified Fe3O4 nanoparticles
    Zhao, Yuling
    Shi, Hao
    Du, Ze
    Zhou, Jinlong
    Yang, Fangyuan
    ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (01):
  • [10] Modeling and optimization of effective parameters on the size of synthesized Fe3O4 superparamagnetic nanoparticles by coprecipitation technique using response surface methodology
    Ghazanfari, Mohammad Reza
    Kashefi, Mehrdad
    Jaafari, Mahmoud Reza
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 405 : 88 - 96