Learning-based multi-agent MPC for irrigation scheduling

被引:6
|
作者
Agyeman, Bernard T. [1 ]
Naouri, Mohamed [2 ]
Appels, Willemijn M. [2 ]
Liu, Jinfeng [1 ]
Shah, Sirish L. [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
[2] Lethbridge Coll, Ctr Appl Res Innovat & Entrepreneurship, Lethbridge, AB T1K 1L6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Learning-based scheduler; Mixed-integer model predictive control; Hybrid actor-critic paradigm; Proximal policy optimization; Nonlinear programming; MODEL-PREDICTIVE CONTROL; MANAGEMENT ZONES; INTEGRATION; SEARCH;
D O I
10.1016/j.conengprac.2024.105908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Amid concerns about freshwater scarcity, the agricultural sector faces challenges in water conservation and optimizing crop yields, highlighting the limitations of traditional irrigation scheduling methods. To overcome these challenges, this paper introduces a unified, learning -based predictive irrigation scheduler that integrates machine learning and Model Predictive Control (MPC), while also incorporating multi -agent principles. The proposed framework incorporates a three -stage management zone delineation process, utilizing k -means clustering and hydraulic parameters estimates for optimized agro-hydrological modeling. Long Short -Term Memory (LSTM) networks are employed for accurate and computationally efficient root zone soil moisture modeling. The scheduler, formulated as a mixed -integer MPC with zone control, utilizes the identified LSTM networks to maximize root water uptake while minimizing overall water consumption and fixed irrigation costs. Additionally, the learning -based scheduler adopts a multi -agent MPC paradigm, where decentralized hybrid actor-critic agents and the concept of a limiting irrigation management zone are employed to enhance computational efficiency. Evaluating the performance on a 26.4 -hectare field in Lethbridge for the 2015 and 2022 growing seasons demonstrates the superiority of the proposed scheduler over the widely -used triggered scheduling approach in terms of Irrigation Water Use Efficiency (IWUE) and total prescribed irrigation. Notably, the proposed approach achieves water savings between 7 to 23%, coupled with IWUE increases ranging from 10 to 35%.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Multi-agent Reinforcement Learning-based Adaptive Heterogeneous DAG Scheduling
    Zhadan, Anastasia
    Allahverdyan, Alexander
    Kondratov, Ivan
    Mikheev, Vikenty
    Petrosian, Ovanes
    Romanovskii, Aleksei
    Kharin, Vitaliy
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (05)
  • [2] A reinforcement learning-based multi-agent framework applied for solving routing and scheduling problems
    Lopes Silva, Maria Amelia
    de Souza, Sergio Ricardo
    Freitas Souza, Marcone Jamilson
    Bazzan, Ana Lucia C.
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 131 : 148 - 171
  • [3] A reinforcement learning-based approach for solving multi-agent job shop scheduling problem
    Dong, Zhuoran
    Ren, Tao
    Qi, Fang
    Weng, Jiacheng
    Bai, Danyu
    Yang, Jie
    Wu, Chin-Chia
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2024,
  • [4] Multi-Agent Reinforcement Learning-Based Fairness-Aware Scheduling for Bursty Traffic
    Yuan, Mingqi
    Cao, Qi
    Pun, Man-On
    Chen, Yi
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [5] A deep learning-based multi-agent system for intrusion detection
    Louati, Faten
    Ktata, Farah Barika
    SN APPLIED SCIENCES, 2020, 2 (04):
  • [6] A deep learning-based multi-agent system for intrusion detection
    Faten Louati
    Farah Barika Ktata
    SN Applied Sciences, 2020, 2
  • [7] Real-time production scheduling using a deep reinforcement learning-based multi-agent approach
    Taghipour, Sharareh
    Namoura, Hamed A.
    Sharifi, Mani
    Ghaleb, Mageed
    INFOR, 2024, 62 (02) : 186 - 210
  • [8] Semi-centralized Multi-agent RL for Irrigation Scheduling
    Agyeman, Bernard T.
    Liu, Jinfeng
    Shah, Sirish L.
    IFAC PAPERSONLINE, 2024, 58 (14): : 145 - 150
  • [9] DEEP REINFORCEMENT LEARNING-BASED IRRIGATION SCHEDULING
    Yang, Y.
    Hu, J.
    Porter, D.
    Marek, T.
    Heflin, K.
    Kong, H.
    Sun, L.
    TRANSACTIONS OF THE ASABE, 2020, 63 (03) : 549 - 556
  • [10] A LEARNING AGENT FOR A MULTI-AGENT SYSTEM FOR PROJECT SCHEDULING IN CONSTRUCTION
    Wenzler, Florian
    Guenthner, Willibald A.
    PROCEEDINGS - 30TH EUROPEAN CONFERENCE ON MODELLING AND SIMULATION ECMS 2016, 2016, : 11 - 17