Automated tear film break-up time measurement for dry eye diagnosis using deep learning

被引:4
作者
El Barche, Fatima-Zahra [1 ,2 ]
Benyoussef, Anas-Alexis [1 ,2 ,3 ]
Daho, Mostafa El Habib [1 ,2 ]
Lamard, Antonin [2 ]
Quellec, Gwenole [1 ]
Cochener, Beatrice [1 ,2 ,3 ]
Lamard, Mathieu [1 ,2 ]
机构
[1] Inserm, LaTIM UMR 1101, Brest, France
[2] Univ Bretagne Occidentale, Brest, France
[3] CHRU Brest, Ophtalmol Dept, Brest, France
关键词
Artificial intelligence; Deep learning; Dry eye disease; Dual task learning; Siamese network; Tear film breakup time; NETWORKS;
D O I
10.1038/s41598-024-62636-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the realm of ophthalmology, precise measurement of tear film break-up time (TBUT) plays a crucial role in diagnosing dry eye disease (DED). This study aims to introduce an automated approach utilizing artificial intelligence (AI) to mitigate subjectivity and enhance the reliability of TBUT measurement. We employed a dataset of 47 slit lamp videos for development, while a test dataset of 20 slit lamp videos was used for evaluating the proposed approach. The multistep approach for TBUT estimation involves the utilization of a Dual-Task Siamese Network for classifying video frames into tear film breakup or non-breakup categories. Subsequently, a postprocessing step incorporates a Gaussian filter to smooth the instant breakup/non-breakup predictions effectively. Applying a threshold to the smoothed predictions identifies the initiation of tear film breakup. Our proposed method demonstrates on the evaluation dataset a precise breakup/non-breakup classification of video frames, achieving an Area Under the Curve of 0.870. At the video level, we observed a strong Pearson correlation coefficient (r) of 0.81 between TBUT assessments conducted using our approach and the ground truth. These findings underscore the potential of AI-based approaches in quantifying TBUT, presenting a promising avenue for advancing diagnostic methodologies in ophthalmology.
引用
收藏
页数:10
相关论文
共 35 条
[1]   Detecting dry eye from ocular surface videos based on deep learning [J].
Abdelmotaal, Hazem ;
Hazarbasanov, Rossen ;
Taneri, Suphi ;
Al-Timemy, Ali ;
Lavric, Alexandru ;
Takahashi, Hidenori ;
Yousefi, Siamak .
OCULAR SURFACE, 2023, 28 :90-98
[2]   Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal SD-OCT imaging biomarkers [J].
Banerjee, Imon ;
de Sisternes, Luis ;
Hallak, Joelle A. ;
Leng, Theodore ;
Osborne, Aaron ;
Rosenfeld, Philip J. ;
Gregori, Giovanni ;
Durbin, Mary ;
Rubin, Daniel .
SCIENTIFIC REPORTS, 2020, 10 (01)
[3]   Automation of dry eye disease quantitative assessment: A review [J].
Brahim, Ikram ;
Lamard, Mathieu ;
Benyoussef, Anas-Alexis ;
Quellec, Gwenole .
CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2022, 50 (06) :653-666
[4]  
Cebreiro E., 2011, P 4 INT S APPL SCI B, P1
[5]   DASNet: Dual Attentive Fully Convolutional Siamese Networks for Change Detection in High-Resolution Satellite Images [J].
Chen, Jie ;
Yuan, Ziyang ;
Peng, Jian ;
Chen, Li ;
Huang, Haozhe ;
Zhu, Jiawei ;
Liu, Yu ;
Li, Haifeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :1194-1206
[6]   TFOS DEWS II Definition and Classification Report [J].
Craig, Jennifer P. ;
Nichols, Kelly K. ;
Akpek, Esen K. ;
Caffery, Barbara ;
Dua, Harminder S. ;
Joo, Choun-Ki ;
Liu, Zuguo ;
Nelson, J. Daniel ;
Nichols, Jason J. ;
Tsubota, Kazuo ;
Stapleton, Fiona .
OCULAR SURFACE, 2017, 15 (03) :276-283
[7]  
Cubuk ED, 2019, Arxiv, DOI arXiv:1909.13719
[8]   DISCOVER: 2-D multiview summarization of Optical Coherence Tomography Angiography for automatic diabetic retinopathy diagnosis [J].
Daho, Mostafa El Habib ;
Li, Yihao ;
Zeghlache, Rachid ;
Le Boite, Hugo ;
Deman, Pierre ;
Borderie, Laurent ;
Ren, Hugang ;
Mannivanan, Niranchana ;
Lepicard, Capucine ;
Cochener, Beatrice ;
Couturier, Aude ;
Tadayoni, Ramin ;
Conze, Pierre-Henri ;
Lamard, Mathieu ;
Quellec, Gwenole .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 149
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]   One-Vote Veto: Semi-Supervised Learning for Low-Shot Glaucoma Diagnosis [J].
Fan, Rui ;
Bowd, Christopher ;
Brye, Nicole ;
Christopher, Mark ;
Weinreb, Robert N. ;
Kriegman, David J. ;
Zangwill, Linda M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (12) :3764-3778