The γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-diagonally dominant degree of Schur complements and its applications

被引:0
作者
Zhenhua Lyu [1 ]
Lixin Zhou [2 ]
Junye Ma [3 ]
机构
[1] Shenyang Aerospace University,School of Science
[2] Guilin University of Aerospace Technology,School of Science
[3] Taiyuan University of Science and Technology,School of Applied Science
关键词
Determinant; Disc theorem; Eigenvalue; -matrix; Schur complements; 15A45; 15A48;
D O I
10.1007/s40314-024-02868-3
中图分类号
学科分类号
摘要
In this paper, we obtain a new estimate for the (product) γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-diagonally dominant degree of the Schur complement of matrices. As applications we discuss the localization of eigenvalues of the Schur complement and present several upper and lower bounds for the determinant of strictly γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-diagonally dominant matrices, which generalizes the corresponding results of Liu and Zhang (SIAM J. Matrix Anal. Appl. 27 (2005) 665-674).
引用
收藏
相关论文
共 59 条
  • [1] Carlson D(1979)Schur complements of diagonally dominant matrices Czech Math J 29 246-251
  • [2] Markham T(2017)The new improved estimates of the dominant degree and disc theorem for the Schur complement of matrices, Linear Multilinea Algebra 65 1329-1348
  • [3] Cui J(2009)Special Appl Math Comput 208 225-230
  • [4] Peng G(2012)-matrices and their Schur and diagonal-Schur complements Appl Math Comput 218 8341-8346
  • [5] Lu Q(2021)Eigenvalue localization refinements for the Schur complement Bull Iran Math Soc 47 265-285
  • [6] Huang Z(2000)The doubly diagonally dominant degree of the Schur complement of strictly doubly diagonally dominant matrices and its applications SIAM Rev 42 233-246
  • [7] Cvetković L(1997)Extremal characterizations of the Schur complement and resulting inequalities Linear Algebra Appl 261 221-235
  • [8] Nedović M(2017)Doubly diagonally domiant matrices Numer Math Theor Meth Appl 10 84-97
  • [9] Cvetković L(2022)The disc theorem for the Schur complement of two class Submatrices with diagonally dominant properties Linear Multilinear Algebra 70 4071-4096
  • [10] Nedović M(2004)On Schur complements of Dashnic-Zusmanovich type matrices Linear Algebra Appl 389 365-380