Development of an Injectable Biphasic Hyaluronic Acid-Based Hydrogel With Stress Relaxation Properties for Cartilage Regeneration

被引:6
|
作者
Kim, Han-Sem [1 ,2 ]
Li, Cheng Ji [1 ,2 ]
Park, Sung-Min [1 ,2 ]
Kim, Kyung Wook [3 ]
Mo, Ji-Hun [4 ]
Jin, Guang-Zhen [1 ,2 ,5 ]
Lee, Hae-Hyoung [1 ,2 ,5 ,6 ,7 ]
Kim, Hae-Won [1 ,2 ,5 ,6 ,7 ]
Shin, Ueon Sang [1 ,2 ]
Lee, Jung-Hwan [1 ,2 ,5 ,6 ,7 ]
机构
[1] Dankook Univ, Inst Tissue Regenerat Engn ITREN, Cheonan 31116, South Korea
[2] Dankook Univ, FOUR NBM Global Res Ctr Regenerat Med BK21, Dept Nanobiomed Sci, Cheonan 31116, South Korea
[3] Dankook Univ Hosp, Dept Orthopaed Surg, Cheonan 31116, South Korea
[4] Dankook Univ, Dept Otorhinolaryngol, Coll Med, Cheonan 31116, South Korea
[5] Dankook Univ, Cell & Matter Inst, Cheonan 31116, South Korea
[6] Dankook Univ, Coll Dent, Dept Biomat Sci, Cheonan 31116, South Korea
[7] Dankook Univ, UCL Eastman Korea Dent Med Innovat Ctr, Cheonan 31116, South Korea
基金
新加坡国家研究基金会;
关键词
adjustable remodeling property; biphasic chondrogenesis; injectable hydrogel; stress-relaxing hydrogels; tissue regeneration; GROWTH-FACTOR; BONE; CHONDROCYTES; EXPRESSION; ADHESION; DELIVERY; CHITOSAN;
D O I
10.1002/adhm.202400043
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Biomimetic stress-relaxing hydrogels with reversible crosslinks attract significant attention for stem cell tissue regeneration compared with elastic hydrogels. However, stress-relaxing hyaluronic acid (HA)-based hydrogels fabricated using conventional technologies lack stability, biocompatibility, and mechanical tunability. Here, it is aimed to address these challenges by incorporating calcium or phosphate components into the HA backbone, which allows reversible crosslinking of HA with alginate to form interpenetrating networks, offering stability and mechanical tunability for mimicking cartilage. Diverse stress-relaxing hydrogels (tau 1/2; SR50, 60-2000 s) are successfully prepared at approximate to 3 kPa stiffness with self-healing and shear-thinning abilities, favoring hydrogel injection. In vitro cell experiments with RNA sequencing analysis demonstrate that hydrogels tune chondrogenesis in a biphasic manner (hyaline or calcified) depending on the stress-relaxation properties and phosphate components. In vivo studies confirm the potential for biphasic chondrogenesis. These results indicate that the proposed stress-relaxing HA-based hydrogel with biphasic chondrogenesis (hyaline or calcified) is a promising material for cartilage regeneration. Injectable biphasic hyaluronic acid-based hydrogels offer a customized platform for tissue regeneration by controlling their remodeling properties. In vitro and in vivo experiments demonstrate the potential for biphasic cartilage regeneration facilitated by stress relaxation ability and functionalization effects, indicating their potential for stem cell therapy and as a platform for customized tissue regeneration. image
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Injectable doxorubicin-loaded hyaluronic acid-based hydrogel for locoregional therapy and inhibiting metastasis of breast cancer
    Shi, Yongli
    Zhu, Huiqing
    Xu, Suyue
    Zhao, Jingya
    Wang, Yuxin
    Pan, Xiaofei
    Zhao, Bingqian
    Sun, Zeyu
    Yin, Yili
    Xu, Linyin
    Wei, Fengjiao
    He, Sisi
    Hou, Xueyan
    Xue, Jintao
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2025, 247
  • [32] MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction
    Dorsey, Shauna M.
    McGarvey, Jeremy R.
    Wang, Hua
    Nikou, Amir
    Arama, Leron
    Koomalsingh, Kevin J.
    Kondo, Norihiro
    Gorman, Joseph H., III
    Pilla, James J.
    Gorman, Robert C.
    Wenk, Jonathan F.
    Burdick, Jason A.
    BIOMATERIALS, 2015, 69 : 65 - 75
  • [33] An injectable BMSC-laden enzyme-catalyzed crosslinking collagen-hyaluronic acid hydrogel for cartilage repair and regeneration
    Zhang, Yajie
    Cao, Yi
    Zhao, Hongbo
    Zhang, Liwei
    Ni, Tianyu
    Liu, Yuanshan
    An, Zhen
    Liu, Min
    Pei, Renjun
    JOURNAL OF MATERIALS CHEMISTRY B, 2020, 8 (19) : 4237 - 4244
  • [34] Influence of viscoelastic properties of an hyaluronic acid-based hydrogel on viability of mesenchymal stem cells
    Eddhahak, Anissa
    Zidi, Mustapha
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2015, 26 (3-4) : 103 - 114
  • [35] Cartilage regeneration using transforming growth factor-beta 3-loaded injectable crosslinked hyaluronic acid hydrogel
    Lee, Ju Hwa
    Kim, Pil Yun
    Pyun, Yun Chang
    Park, Jonggyu
    Kang, Tae Woong
    Seo, Jin Sol
    Lee, Dae Hoon
    Khang, Gilson
    BIOMATERIALS SCIENCE, 2024, 12 (02) : 479 - 494
  • [36] Injectable hydrogel-based drug delivery system for cartilage regeneration
    Garcia-Fernandez, Luis
    Olmeda-Lozano, Marta
    Benito-Garzon, Lorena
    Perez-Caballer, Antonio
    San Roman, Julio
    Vazquez-Lasa, Blanca
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 110
  • [37] Nanocomposite hyaluronic acid-based hydrogel for the treatment of esophageal fistulas
    Piantanida, E.
    Boskoski, I
    Quero, G.
    Gallo, C.
    Zhang, Y.
    Fiorillo, C.
    Arena, V
    Costamagna, G.
    Perretta, S.
    De Cola, L.
    MATERIALS TODAY BIO, 2021, 10
  • [38] Injectable silanized hyaluronic acid hydrogel/biphasic calcium phosphate granule composites with improved handling and biodegradability promote bone regeneration in rabbits
    Flegeau, Killian
    Gauthier, Olivier
    Rethore, Gildas
    Autrusseau, Florent
    Schaefer, Aurelie
    Lesoeur, Julie
    Veziers, Joelle
    Bresin, Anthony
    Gautier, Helene
    Weiss, Pierre
    BIOMATERIALS SCIENCE, 2021, 9 (16) : 5640 - 5651
  • [39] Hyaluronic acid-based biomaterials in tissue engineered cartilage repair
    Solchaga, LA
    Goldberg, VM
    Caplan, AI
    NEW FRONTIERS IN MEDICAL SCIENCES: REDEFINING HYALURONAN, 2000, 1196 : 233 - 246
  • [40] Strategies for Hyaluronic Acid-Based Hydrogel Design in Drug Delivery
    Trombino, Sonia
    Servidio, Camilla
    Curcio, Federica
    Cassano, Roberta
    PHARMACEUTICS, 2019, 11 (08)