Invariant measures of stochastic delay complex Ginzburg-Landau equations

被引:0
|
作者
Ren, Die [1 ]
Shu, Ji [1 ,2 ]
Liu, Aili [1 ]
Zou, Yanyan [1 ]
机构
[1] Sichuan Normal Univ, Laurent Math Ctr, Sch Math Sci, Chengdu 610066, Peoples R China
[2] Sichuan Normal Univ, VC & VR Key Lab, Chengdu 610066, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex Ginzburg-Landau equation; invariant measure; delay; tail-estimates; LATTICE DYNAMICAL-SYSTEMS; TRAVELING-WAVES; ATTRACTORS; PROPAGATION;
D O I
10.1080/17442508.2024.2347849
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence of invariant measures for stochastic delay complex Ginzburg-Landau equations defined on the entire integer set. When the nonlinear drift and diffusion terms are globally Lipschitz continous, the existence of invariant measures of the equation is proved by estiblishing the tightness of probability distributions of solutions in the space of continuous functions from a finite interval to an infinite-dimensional space, based on the idea of uniform tail-estimates, the technique of diadic division and the Arzela-Ascoli theorem.
引用
收藏
页码:1667 / 1699
页数:33
相关论文
共 50 条
  • [1] Studies on invariant measures of fractional stochastic delay Ginzburg-Landau equations on Rn
    Lu, Hong
    Wang, Linlin
    Zhang, Mingji
    Mathematical Biosciences and Engineering, 2024, 21 (04) : 5456 - 5498
  • [2] Existence of periodic measures of fractional stochastic delay complex Ginzburg-Landau equations on Rn
    Li, Zhiyu
    Song, Xiaomin
    He, Gang
    Shu, Ji
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (06)
  • [3] Ergodicity for the stochastic complex Ginzburg-Landau equations
    Odasso, Cyril
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2006, 42 (04): : 417 - 454
  • [4] Space-time invariant measures, entropy, and dimension for stochastic Ginzburg-Landau equations
    Rougemont, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 225 (02) : 423 - 448
  • [5] Averaging principle for stochastic complex Ginzburg-Landau equations
    Cheng, Mengyu
    Liu, Zhenxin
    Roeckner, Michael
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 368 : 58 - 104
  • [6] CONTROLLABILITY AND OBSERVABILITY OF SOME STOCHASTIC COMPLEX GINZBURG-LANDAU EQUATIONS
    Fu, Xiaoyu
    Liu, Xu
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2017, 55 (02) : 1102 - 1127
  • [7] INVARIANT MEASURES FOR NONLOCAL STOCHASTIC COMPLEX GINZBURG-LANDAU LATTICE SYSTEMS WITH TIME DELAYS IN WEIGHTED SPACE
    Li, Xintao
    Wang, Dan
    Wang, Xu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (05): : 1779 - 1808
  • [8] New solutions to the complex Ginzburg-Landau equations
    Conte, Robert
    Musette, Micheline
    Ng, Tuen Wai
    Wu, Chengfa
    PHYSICAL REVIEW E, 2022, 106 (04)
  • [9] ON THE GINZBURG-LANDAU EQUATIONS
    CARROLL, RW
    GLICK, AJ
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (05) : 373 - 384
  • [10] Synchronization in nonidentical complex Ginzburg-Landau equations
    Zhou, CT
    CHAOS, 2006, 16 (01)