Jackknife Model Averaging for Composite Quantile Regression

被引:0
|
作者
You, Kang [1 ]
Wang, Miaomiao [2 ]
Zou, Guohua [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100089, Peoples R China
[2] Beijing Univ Chinese Med, Sch Chinese Mat Med, Beijing 100105, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic optimality; composite quantile regression; cross-validation; model averaging; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; CRITERION;
D O I
10.1007/s11424-024-2448-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters. Different from the traditional model averaging for quantile regression which considers only a single quantile, the proposed model averaging estimator is based on multiple quantiles. The well-known delete-one cross-validation or jackknife approach is applied to estimate the model weights. The resultant jackknife model averaging estimator is shown to be asymptotically optimal in terms of minimizing the out-of-sample composite final prediction error. Simulation studies are conducted to demonstrate the finite sample performance of the new model averaging estimator. The proposed method is also applied to the analysis of the stock returns data and the wage data.
引用
收藏
页码:1604 / 1637
页数:34
相关论文
共 50 条
  • [21] Model averaging marginal regression for high dimensional conditional quantile prediction
    Jingwen Tu
    Hu Yang
    Chaohui Guo
    Jing Lv
    Statistical Papers, 2021, 62 : 2661 - 2689
  • [22] Probabilistic Ambient Temperature Forecasting Using Quantile Regression Averaging Model
    Tripathy, Debesh Shankar
    Prusty, B. Rajanarayan
    Bingi, Kishore
    2021 IEEE INTERNATIONAL POWER AND RENEWABLE ENERGY CONFERENCE (IPRECON), 2021,
  • [23] Model averaging marginal regression for high dimensional conditional quantile prediction
    Tu, Jingwen
    Yang, Hu
    Guo, Chaohui
    Lv, Jing
    STATISTICAL PAPERS, 2021, 62 (06) : 2661 - 2689
  • [24] Averaging Estimation for Instrumental Variables Quantile Regression
    Liu, Xin
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2024, 86 (05) : 1290 - 1312
  • [25] Composite versus model-averaged quantile regression
    Bloznelis, Daumantas
    Claeskens, Gerda
    Zhou, Jing
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 200 : 32 - 46
  • [26] Composite quantile regression and the oracle model selection theory
    Zou, Hui
    Yuan, Ming
    ANNALS OF STATISTICS, 2008, 36 (03): : 1108 - 1126
  • [27] Jackknife Model Averaging of the Current Account Determinants
    Urosevic, Branko
    Nedeljkovic, Milan
    Zildzovic, Emir
    PANOECONOMICUS, 2012, 59 (03) : 267 - 281
  • [28] Jackknife model averaging for additive expectile prediction
    Sun, Xianwen
    Zhang, Lixin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (19) : 6799 - 6831
  • [29] Bayesian composite quantile regression
    Huang, Hanwen
    Chen, Zhongxue
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (18) : 3744 - 3754
  • [30] Composite smoothed quantile regression
    Yan, Yibo
    Wang, Xiaozhou
    Zhang, Riquan
    STAT, 2023, 12 (01):