Anomalous quantum transport in fractal lattices

被引:2
作者
Rojo-Francas, Abel [1 ,2 ,3 ]
Pansari, Priyanshu [4 ]
Bhattacharya, Utso [5 ,6 ]
Julia-Diaz, Bruno [2 ,3 ]
Grass, Tobias [1 ,7 ]
机构
[1] Donostia Int Phys Ctr, DIPC, San Sebastian, Spain
[2] Univ Barcelona, Dept Fis Quant & Astrofis, Fac Fis, Barcelona, Spain
[3] Univ Barcelona, Inst Ciencies Cosmos, ICCUB, Barcelona, Spain
[4] Indian Inst Technol, Roorkee, India
[5] Barcelona Inst Sci & Technol, Inst Ciencies Foton, ICFO, Barcelona, Spain
[6] Swiss Fed Inst Technol, Inst Theoret Phys, Zurich, Switzerland
[7] Basque Fdn Sci, IKERBASQUE, Bilbao, Spain
来源
COMMUNICATIONS PHYSICS | 2024年 / 7卷 / 01期
关键词
DIFFUSION; LOCALIZATION;
D O I
10.1038/s42005-024-01747-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fractal lattices are self-similar structures with repeated patterns on different scales. Quantum transport through such structures is subtle due to the possible co-existence of localized and extended states. Here, we study the dynamical properties of two fractal lattices, the Sierpi & nacute;ski gasket and the Sierpi & nacute;ski carpet. While the gasket exhibits sub-diffusive behavior, sub-ballistic transport occurs in the carpet. We show that the different dynamical behavior is in line with qualitative differences of the systems' spectral properties. Specifically, in contrast to the Sierpi & nacute;ski carpet, the Sierpi & nacute;ski gasket exhibits an inverse power-law behavior of the level spacing distribution. As a possible technological application, we discuss a memory effect in the Sierpi & nacute;ski gasket which allows to read off the phase information of an initial state from the spatial distribution after long evolution times. We also show that interpolating between fractal and regular lattices allows for flexible tuning between different transport regimes. Fractal lattices have become an experimentally accessible platform to explore a rich variety of quantum transport phenomena. The authors show that, subtly depending on the specific geometry, sub-diffusive or sub-ballistic transport occurs, and relate this behavior to the spectral properties of the lattice.
引用
收藏
页数:8
相关论文
共 43 条
  • [1] ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
  • [2] ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES
    ANDERSON, PW
    [J]. PHYSICAL REVIEW, 1958, 109 (05): : 1492 - 1505
  • [3] Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
  • [4] Fractal photonic topological insulators
    Biesenthal, Tobias
    Maczewsky, Lukas J.
    Yang, Zhaoju
    Kremer, Mark
    Segev, Mordechai
    Szameit, Alexander
    Heinrich, Matthias
    [J]. SCIENCE, 2022, 376 (6597) : 1114 - +
  • [5] Topology in the Sierpinski-Hofstadter problem
    Brzezinska, Marta
    Cook, Ashley M.
    Neupert, Titus
    [J]. PHYSICAL REVIEW B, 2018, 98 (20)
  • [6] Transport properties of continuous-time quantum walks on Sierpinski fractals
    Darazs, Zoltan
    Anishchenko, Anastasiia
    Kiss, Tamas
    Blumen, Alexander
    Muelken, Oliver
    [J]. PHYSICAL REVIEW E, 2014, 90 (03):
  • [7] SOLUTIONS TO THE SCHRODINGER-EQUATION ON SOME FRACTAL LATTICES
    DOMANY, E
    ALEXANDER, S
    BENSIMON, D
    KADANOFF, LP
    [J]. PHYSICAL REVIEW B, 1983, 28 (06): : 3110 - 3123
  • [8] Quantum computation and decision trees
    Farhi, E
    Gutmann, S
    [J]. PHYSICAL REVIEW A, 1998, 58 (02): : 915 - 928
  • [9] QUANTUM DIFFUSION, FRACTAL SPECTRA, AND CHAOS IN SEMICONDUCTOR MICROSTRUCTURES
    FLEISCHMANN, R
    GEISEL, T
    KETZMERICK, R
    PETSCHEL, G
    [J]. PHYSICA D, 1995, 86 (1-2): : 171 - 181
  • [10] Existence of robust edge currents in Sierpinski fractals
    Fremling, Mikael
    van Hooft, Michal
    Smith, Cristiane Morais
    Fritz, Lars
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (01):