Existence of Solutions to the Non-Self-Adjoint Sturm-Liouville Problem with Discontinuous Nonlinearity

被引:0
作者
Baskov, O. V. [1 ]
Potapov, D. K. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 199034, Russia
基金
俄罗斯科学基金会;
关键词
Sturm-Liouville problem; non-self-adjoint differential operator; discontinuous nonlinearity; nontrivial solutions; 2ND-ORDER DIFFERENTIAL-EQUATION; BOUNDARY-VALUE PROBLEM;
D O I
10.1134/S0965542524700489
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the existence of solutions to the Sturm-Liouville problem with a non-self-adjoint differential operator and discontinuous nonlinearity in the phase variable. For positive values of the spectral parameter, theorems on the existence of nontrivial (positive and negative) solutions of the problem are proved. Examples illustrating the theorems are given.
引用
收藏
页码:1254 / 1260
页数:7
相关论文
共 12 条
[1]   On Solutions of a Boundary Value Problem for a Second-Order Differential Equation with a Parameter and Discontinuous Right-Hand Side [J].
Baskov, O. V. ;
Potapov, D. K. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (08) :1424-1436
[2]   Control and perturbation in Sturm - Liouville's problem with discontinuous nonlinearity [J].
Baskov, Oleg V. ;
Potapov, Dmitriy K. .
VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2023, 19 (02) :275-282
[3]  
Bonanno G, 2016, MINIMAX THEORY APPL, V1, P125
[4]   TWO POINT BOUNDARY VALUE PROBLEMS FOR THE STURM-LIOUVILLE EQUATION WITH HIGHLY DISCONTINUOUS NONLINEARITIES [J].
Bonanno, Gabriele ;
Buccellato, Stefania Maria .
TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (05) :2059-2072
[5]   Infinitely Many Solutions for a Boundary Value Problem with Discontinuous Nonlinearities [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica .
BOUNDARY VALUE PROBLEMS, 2009,
[6]   Existence and comparison results for variational-hemivariational inequalities [J].
Carl, S. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2005, 2005 (01) :33-40
[7]  
Pavlenko VN, 2017, Siberian Advances in Mathematics, V27, P16, DOI [10.3103/s1055134417010023, 10.3103/S1055134417010023, DOI 10.3103/S1055134417010023]
[8]   The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities [J].
Pavlenko, V. N. ;
Potapov, D. K. .
SBORNIK MATHEMATICS, 2015, 206 (09) :1281-1298
[9]  
Pavlenko V. N., 2019, Mat. Zh, V4, P142
[10]   Approximation to the Sturm-Liouville Problem with a Discontinuous Nonlinearity [J].
Potapov, D. K. .
DIFFERENTIAL EQUATIONS, 2023, 59 (09) :1185-1192