Characterization of Holomorphic Invariant Complex Finsler Metrics and Schwarz Lemma on the Polyball

被引:0
作者
Lin, Shuqing [1 ]
Wang, Ruiwen [1 ]
Zhong, Chunping [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Invariant metric; K & auml; hler-Berwald metric; Holomorphic sectional curvature; Schwarz lemma;
D O I
10.1007/s12220-024-01713-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A domain B subset of CN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {B}\subset \mathbb {C}<^>N$$\end{document} is called a polyball if it is given as a direct product of open unit balls. We prove that every holomorphic invariant strongly pseudoconvex complex Finsler metric F:T1,0B ->[0,+infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:T<^>{1,0}\pmb {B}\rightarrow [0,+\infty )$$\end{document} on a polyball B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {B}$$\end{document} is necessary a K & auml;hler-Berwald metric with the holomorphic sectional curvature bounded between two negative constants, and its holomorphic bisectional curvature is nonpositive and bounded from below by a negative constant. These important curvature properties make it possible for us to establish a Schwarz lemma for holomorphic mappings f from a polyball B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {B}_1$$\end{document} into another polyball B2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {B}_2$$\end{document} whenever they are endowed with arbitrary holomorphic invariant K & auml;hler-Berwald metrics which are not necessary Hermitian quadratic.
引用
收藏
页数:32
相关论文
共 30 条
[11]  
Kohr M, 2005, STUD U BABES-BOL MAT, V50, P129
[12]   A SCHWARZ LEMMA FOR BOUNDED SYMMETRIC DOMAINS [J].
KORANYI, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (01) :210-&
[13]   Characterization of Holomorphic Invariant Strongly Pseudoconvex Complex Finsler Metrics on Unit Polydisks [J].
Lin, Shuqing ;
Zhong, Chunping .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (11)
[14]  
Look KH., 1958, SCI SINICA, V5, P453
[15]  
Look KH., 1957, ACTA MATH SIN, V7, P370
[16]  
Narasimhan R., 1971, Chicago Lectures in Mathematics
[17]   A Schwarz lemma for weakly Kahler-Finsler manifolds [J].
Nie, Jun ;
Zhong, Chunping .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (04) :1935-1964
[18]   Schwarz lemma from a Kahler manifold into a complex Finsler manifold [J].
Nie, Jun ;
Zhong, Chunping .
SCIENCE CHINA-MATHEMATICS, 2022, 65 (08) :1661-1678
[19]  
Poincare H., 1907, REND CIRC MAT PALERM, V23, P185
[20]  
Pyatetskii-Shapiro I. I., 1969, AUTOMORPHIC FUNCTION