In this study, various concentrations of chrysin (chry) were loaded into polycaprolactone-chitosan (PCL-CTS) nanofibers to develop a potential wound dressing materials using electrospinning method. The structural composition and the morphology of the produced PCL-CTS5, PCL-CTS10 and PCL-CTS15 were analyzed by FESEM and FTIR, respectively. By increasing the amount of chry, the average diameter of the nanofibres was also increased to 191 +/- 65 nm, 203 +/- 72 nm, and 313 +/- 69 nm for PCL-CTS5, PCL-CTS10, and PCL-CTS15, respectively. Moreover, the physicochemical characteristics and biological properties of synthesized nanofibers such as tensile testing, in-vitro drug release, porosity, decomposition rate, water absorption rate, water vapor permeability rate, cell viability, antioxidant and antibacterial activity were evaluated. By using KorsmeyerPeppas and Higuchi kinetic models, the chry release mechanism in all nanofibers was studied in PBS solution, which suggested a Fick's diffusion. In-vitro antioxidant experiments by DPPH assay indicated 24, 43, 61 and 78 % free radical scavenging activity for PCL-CTS, PCL-CTS5, PCL-CTS10 and PCL-CTS15. In-vitro antibacterial examination showed that chry-loaded nanofibers had high antibacterial activity in which were comparable with the standard reagents. In-vitro cytotoxicity results obtained by MTT assay indicated a desired cytocompatibility towards fibroblast cells.