TL-YOLO: Foreign-Object Detection on Power Transmission Line Based on Improved Yolov8

被引:6
|
作者
Shao, Yeqin [1 ]
Zhang, Ruowei [2 ]
Lv, Chang [1 ]
Luo, Zexing [1 ]
Che, Meiqin [1 ]
机构
[1] Nantong Univ, Sch Transportat & Civil Engn, Nantong 226019, Peoples R China
[2] Nantong Univ, Sch Elect Engn, Nantong 226004, Peoples R China
基金
中国国家自然科学基金;
关键词
power transmission line; foreign-object detection; Yolov8; attention mechanism; feature fusion;
D O I
10.3390/electronics13081543
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Foreign objects on power transmission lines carry a significant risk of triggering large-scale power interruptions which may have serious consequences for daily life if they are not detected and handled in time. To accurately detect foreign objects on power transmission lines, this paper proposes a TL-Yolo method based on the Yolov8 framework. Firstly, we design a full-dimensional dynamic convolution (ODConv) module as a backbone network to enhance the feature extraction capability, thus retaining richer semantic content and important visual features. Secondly, we present a feature fusion framework combining a weighted bidirectional feature pyramid network (BiFPN) and multiscale attention (MSA) module to mitigate the degradation effect of multiscale feature representation in the fusion process, and efficiently capture the high-level feature information and the core visual elements. Thirdly, we utilize a lightweight GSConv cross-stage partial network (GSCSP) to facilitate efficient cross-level feature fusion, significantly reducing the complexity and computation of the model. Finally, we employ the adaptive training sample selection (ATSS) strategy to balance the positive and negative samples, and dynamically adjust the selection process of the training samples according to the current state and performance of the model, thus effectively reducing the object misdetection and omission. The experimental results show that the average detection accuracy of the TL-Yolo method reaches 91.30%, which is 4.20% higher than that of the Yolov8 method. Meanwhile, the precision and recall metrics of our method are 4.64% and 3.53% higher than those of Yolov8. The visualization results also show the superior detection performance of the TL-Yolo algorithm in real scenes. Compared with the state-of-the-art methods, our method achieves higher accuracy and speed in the detection of foreign objects on power transmission lines.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] RLE-YOLO: A Lightweight and Multiscale SAR Ship Detection Based on Improved YOLOv8
    Xu, Yifan
    Xue, Xiaorong
    Li, Chuanlu
    Zhao, Siyue
    Xu, Xingbiao
    Zeng, Caijia
    IEEE ACCESS, 2025, 13 : 46584 - 46600
  • [42] RLGS-YOLO: an improved algorithm for metro station passenger detection based on YOLOv8
    Qin, Yaodong
    Li, Xianwang
    He, Deqiang
    Zhou, Yucun
    Li, Liangjie
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [43] YOLOv8-QSD: An Improved Small Object Detection Algorithm for Autonomous Vehicles Based on YOLOv8
    Wang, Hai
    Liu, Chenyu
    Cai, Yingfeng
    Chen, Long
    Li, Yicheng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 16
  • [44] FBS-YOLO: an improved lightweight bearing defect detection algorithm based on YOLOv8
    Li, Junjie
    Cheng, Mingxia
    PHYSICA SCRIPTA, 2025, 100 (02)
  • [45] SES-YOLOv8n: automatic driving object detection algorithm based on improved YOLOv8
    Sun, Yang
    Zhang, Yuhang
    Wang, Haiyang
    Guo, Jianhua
    Zheng, Jiushuai
    Ning, Haonan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (05) : 3983 - 3992
  • [46] YOLO-Drone: An Optimized YOLOv8 Network for Tiny UAV Object Detection
    Zhai, Xianxu
    Huang, Zhihua
    Li, Tao
    Liu, Hanzheng
    Wang, Siyuan
    ELECTRONICS, 2023, 12 (17)
  • [47] High-Voltage Transmission Line Foreign Object and Power Component Defect Detection Based on Improved YOLOv5
    Shanshan Wang
    Weiwei Tan
    Tengfei Yang
    Liang Zeng
    Wenguang Hou
    Quan Zhou
    Journal of Electrical Engineering & Technology, 2024, 19 : 851 - 866
  • [48] High-Voltage Transmission Line Foreign Object and Power Component Defect Detection Based on Improved YOLOv5
    Wang, Shanshan
    Tan, Weiwei
    Yang, Tengfei
    Zeng, Liang
    Hou, Wenguang
    Zhou, Quan
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 19 (01) : 851 - 866
  • [49] A Novel Foreign Object Detection Method in Transmission Lines Based on Improved YOLOv8n
    Liu, Yakui
    Jiang, Xing
    Xu, Ruikang
    Cui, Yihao
    Yu, Chenhui
    Yang, Jingqi
    Zhou, Jishuai
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (01): : 1263 - 1279
  • [50] Improved Infrared Road Object Detection Algorithm Based on Attention Mechanism in YOLOv8
    Luo, Zilong
    Tian, Ying
    IAENG International Journal of Computer Science, 2024, 51 (06) : 673 - 680