No massive black holes in the Milky Way halo

被引:33
作者
Mroz, Przemek [1 ]
Udalski, Andrzej [1 ]
Szymanski, Michal K. [1 ]
Soszynski, Igor [1 ]
Wyrzykowski, Lukasz [1 ]
Pietrukowicz, Pawel [1 ]
Kozlowski, Szymon [1 ]
Poleski, Radoslaw [1 ]
Skowron, Jan [1 ]
Skowron, Dorota [1 ]
Ulaczyk, Krzysztof [1 ,2 ]
Gromadzki, Mariusz [1 ]
Rybicki, Krzysztof [1 ,3 ]
Iwanek, Patryk [1 ]
Wrona, Marcin [1 ]
Ratajczak, Milena [1 ]
机构
[1] Univ Warsaw, Astron Observ, Warsaw, Poland
[2] Univ Warwick, Dept Phys, Coventry, England
[3] Weizmann Inst Sci, Dept Particle Phys & Astrophys, Rehovot, Israel
关键词
LARGE-MAGELLANIC-CLOUD; DARK-MATTER; PROJECT; CONSTRAINTS; EVOLUTION; GALAXIES; LIMITS; STARS; VIEW; DISK;
D O I
10.1038/s41586-024-07704-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The gravitational wave detectors have shown a population of massive black holes that do not resemble those observed in the Milky Way1-3 and whose origin is debated4-6. According to a possible explanation, these black holes may have formed from density fluctuations in the early Universe (primordial black holes)7-9, and they should comprise several to 100% of dark matter to explain the observed black hole merger rates10-12. If these black holes existed in the Milky Way dark matter halo, they would cause long-timescale gravitational microlensing events lasting years13. The previous experiments were not sufficiently sensitive to such events14-17. Here we present the results of the search for long-timescale microlensing events among the light curves of nearly 80 million stars located in the Large Magellanic Cloud that were monitored for 20 years by the Optical Gravitational Lensing Experiment survey18. We did not find any events with timescales longer than 1 year, whereas all shorter events detected may be explained by known stellar populations. We find that compact objects in the mass range from 1.8 x 10-4M circle dot to 6.3M circle dot cannot make up more than 1% of dark matter, and those in the mass range from 1.3 x 10-5M circle dot to 860 M circle dot cannot make up more than 10% of dark matter. Thus, primordial black holes in this mass range cannot simultaneously explain a substantial fraction of dark matter and gravitational wave events. The results of the search for long-timescale microlensing events among the light curves of nearly 80 million stars located in the Large Magellanic Cloud indicate that there are no massive black holes in the Milky Way halo.
引用
收藏
页码:749 / 751
页数:17
相关论文
共 56 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S., V ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. ;
Bader, M. K. M. ;
Bae, S. ;
Baker, P. T. .
PHYSICAL REVIEW X, 2019, 9 (03)
[3]   A Robust Test of the Existence of Primordial Black Holes in Galactic Dark Matter Halos [J].
Abramowicz, Marek ;
Bejger, Michal ;
Udalski, Andrzej ;
Wielgus, Maciek .
ASTROPHYSICAL JOURNAL LETTERS, 2022, 935 (02)
[4]   The MACHO project: Microlensing results from 5.7 years of Large Magellanic Cloud observations [J].
Alcock, C ;
Allsman, RA ;
Alves, DR ;
Axelrod, TS ;
Becker, AC ;
Bennett, DP ;
Cook, KH ;
Dalal, N ;
Drake, AJ ;
Freeman, KC ;
Geha, M ;
Griest, K ;
Lehner, MJ ;
Marshall, SL ;
Minniti, D ;
Nelson, CA ;
Peterson, BA ;
Popowski, P ;
Pratt, MR ;
Quinn, PJ ;
Stubbs, CW ;
Sutherland, W ;
Tomaney, AB ;
Vandehei, T ;
Welch, D .
ASTROPHYSICAL JOURNAL, 2000, 542 (01) :281-307
[5]   MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters [J].
Askar, Abbas ;
Szkudlarek, Magdalena ;
Gondek-Rosinska, Dorota ;
Giersz, Mirek ;
Bulik, Tomasz .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (01) :L36-L40
[6]   The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range [J].
Belczynski, Krzysztof ;
Holz, Daniel E. ;
Bulik, Tomasz ;
O'Shaughnessy, Richard .
NATURE, 2016, 534 (7608) :512-+
[7]   Can a Strong Radio Burst Escape the Magnetosphere of a Magnetar? [J].
Beloborodov, Andrei M. .
ASTROPHYSICAL JOURNAL LETTERS, 2021, 922 (01)
[8]   Did LIGO Detect Dark Matter? [J].
Bird, Simeon ;
Cholis, Ilias ;
Munoz, Julian B. ;
Ali-Haimoud, Yacine ;
Kamionkowski, Marc ;
Kovetz, Ely D. ;
Raccanelli, Alvise ;
Riess, Adam G. .
PHYSICAL REVIEW LETTERS, 2016, 116 (20)
[9]   New limits from microlensing on Galactic black holes in the mass range 10 M⊙ < M < 1000 M⊙ [J].
Blaineau, T. ;
Moniez, M. ;
Afonso, C. ;
Albert, J-N ;
Ansari, R. ;
Aubourg, E. ;
Coutures, C. ;
Glicenstein, J-F ;
Goldman, B. ;
Hamadache, C. ;
Lasserre, T. ;
Le Guillou, L. ;
Lesquoy, E. ;
Magneville, C. ;
Marquette, J-B ;
Palanque-Delabrouille, N. ;
Perdereau, O. ;
Rich, J. ;
Spiro, M. ;
Tisserand, P. .
ASTRONOMY & ASTROPHYSICS, 2022, 664
[10]   Gaia Early Data Release 3 Summary of the contents and survey properties [J].
Brown, A. G. A. ;
Vallenari, A. ;
Prusti, T. ;
de Bruijne, J. H. J. ;
Babusiaux, C. ;
Biermann, M. ;
Creevey, O. L. ;
Evans, D. W. ;
Eyer, L. ;
Hutton, A. ;
Jansen, F. ;
Jordi, C. ;
Klioner, S. A. ;
Lammers, U. ;
Lindegren, L. ;
Luri, X. ;
Mignard, F. ;
Panem, C. ;
Pourbaix, D. ;
Randich, S. ;
Sartoretti, P. ;
Soubiran, C. ;
Walton, N. A. ;
Arenou, F. ;
Bailer-Jones, C. A. L. ;
Bastian, U. ;
Cropper, M. ;
Drimmel, R. ;
Katz, D. ;
Lattanzi, M. G. ;
van Leeuwen, F. ;
Bakker, J. ;
Cacciari, C. ;
Castaneda, J. ;
De Angeli, F. ;
Ducourant, C. ;
Fabricius, C. ;
Fouesneau, M. ;
Fremat, Y. ;
Guerra, R. ;
Guerrier, A. ;
Guiraud, J. ;
Jean-Antoine Piccolo, A. ;
Masana, E. ;
Messineo, R. ;
Mowlavi, N. ;
Nicolas, C. ;
Nienartowicz, K. ;
Pailler, F. ;
Panuzzo, P. .
ASTRONOMY & ASTROPHYSICS, 2021, 649