From square plaquettes to triamond lattices for SU(2) gauge theory

被引:6
作者
Kavaki, Ali H. Z. [1 ]
Lewis, Randy [1 ]
机构
[1] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada
来源
COMMUNICATIONS PHYSICS | 2024年 / 7卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Errors - Lattice theory - Quantum computers - Quantum theory;
D O I
10.1038/s42005-024-01697-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lattice gauge theory should be able to address significant new scientific questions when implemented on quantum computers. In practice, error-mitigation techniques have already allowed encouraging progress on small lattices. In this work we focus on a truncated version of SU(2) gauge theory, which is a familiar non-Abelian step toward quantum chromodynamics. First, we demonstrate effective error mitigation for imaginary time evolution on a lattice having two square plaquettes, obtaining the ground state using an IBM quantum computer and observing that this would have been impossible without error mitigation. Then we propose the triamond lattice as an expedient approach to lattice gauge theories in three spatial dimensions and we derive the Hamiltonian. Finally, error-mitigated imaginary time evolution is applied to the three-dimensional triamond unit cell, and its ground state is obtained from an IBM quantum computer. Future work will want to relax the truncation on the gauge fields, and the triamond lattice is increasingly valuable for such studies. When implemented on quantum computers, lattice gauge theory should be able to address significant new scientific questions about quarks and gluons. The authors of this paper replace the traditional Cartesian lattice by one that has unique symmetry properties, and they use this new lattice to perform an error-mitigated quantum computer calculation.
引用
收藏
页数:12
相关论文
共 91 条
[1]   SU(2) lattice gauge theory: Local dynamics on nonintersecting electric flux loops [J].
Anishetty, Ramesh ;
Raychowdhury, Indrakshi .
PHYSICAL REVIEW D, 2014, 90 (11)
[2]   The anomalous magnetic moment of the muon in the Standard Model [J].
Aoyama, T. ;
Asmussen, N. ;
Benayoun, M. ;
Bijnens, J. ;
Blum, T. ;
Bruno, M. ;
Caprini, I ;
Calame, C. M. Carloni ;
Ce, M. ;
Colangelo, G. ;
Curciarello, F. ;
Czyz, H. ;
Danilkin, I ;
Davier, M. ;
Davies, C. T. H. ;
Della Morte, M. ;
Eidelman, S., I ;
El-Khadra, A. X. ;
Gerardin, A. ;
Giusti, D. ;
Golterman, M. ;
Gottlieb, Steven ;
Gulpers, V ;
Hagelstein, F. ;
Hayakawa, M. ;
Herdoiza, G. ;
Hertzog, D. W. ;
Hoecker, A. ;
Hoferichter, M. ;
Hoid, B-L ;
Hudspith, R. J. ;
Ignatov, F. ;
Izubuchi, T. ;
Jegerlehner, F. ;
Jin, L. ;
Keshavarzi, A. ;
Kinoshita, T. ;
Kubis, B. ;
Kupich, A. ;
Kupsc, A. ;
Laub, L. ;
Lehner, C. ;
Lellouch, L. ;
Logashenko, I ;
Malaescu, B. ;
Maltman, K. ;
Marinkovic, M. K. ;
Masjuan, P. ;
Meyer, A. S. ;
Meyer, H. B. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2020, 887 :1-166
[3]   Sachdev-Ye-Kitaev model on a noisy quantum computer [J].
Asaduzzaman, Muhammad ;
Jha, Raghav G. ;
Sambasivam, Bharath .
PHYSICAL REVIEW D, 2024, 109 (10)
[4]   Simulating one-dimensional quantum chromodynamics on a quantum computer: Real-time evolutions of tetra- and pentaquarks [J].
Atas, Yasar Y. ;
Haase, Jan F. ;
Zhang, Jinglei ;
Wei, Victor ;
Pfaendler, Sieglinde M. -L. ;
Lewis, Randy ;
Muschik, Christine A. .
PHYSICAL REVIEW RESEARCH, 2023, 5 (04)
[5]   SU(2) hadrons on a quantum computer via a variational approach [J].
Atas, Yasar Y. ;
Zhang, Jinglei ;
Lewis, Randy ;
Jahanpour, Amin ;
Haase, Jan F. ;
Muschik, Christine A. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[6]   From the SU(2) quantum link model on the honeycomb lattice to the quantum dimer model on the kagome lattice: Phase transition and fractionalized flux strings [J].
Banerjee, D. ;
Jiang, F. -J. ;
Olesen, T. Z. ;
Orland, P. ;
Wiese, U. -J. .
PHYSICAL REVIEW B, 2018, 97 (20)
[7]   Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories [J].
Banerjee, D. ;
Boegli, M. ;
Dalmonte, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[8]   Efficient Basis Formulation for (1+1)-Dimensional SU(2) Lattice Gauge Theory: Spectral Calculations with Matrix Product States [J].
Banuls, Mari Carmen ;
Cichy, Krzysztof ;
Cirac, J. Ignacio ;
Jansen, Karl ;
Kuehn, Stefan .
PHYSICAL REVIEW X, 2017, 7 (04)
[9]  
Bauer CW, 2023, Arxiv, DOI arXiv:2307.11829
[10]   Quantum simulation of fundamental particles and forces [J].
Bauer, Christian W. ;
Davoudi, Zohreh ;
Klco, Natalie ;
Savage, Martin J. .
NATURE REVIEWS PHYSICS, 2023, 5 (07) :420-432