Long-time Asymptotics for the Reverse Space-time Nonlocal Hirota Equation with Decaying Initial Value Problem: without Solitons

被引:1
作者
Peng, Wei-qi [1 ]
Chen, Yong [1 ,2 ]
机构
[1] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Riemann-Hilbert problem; reverse space-time nonlocal Hirota equation; long-time asymptotics; nonlinear steepest descent method; NONLINEAR SCHRODINGER-EQUATION;
D O I
10.1007/s10255-024-1121-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we mainly consider the Cauchy problem for the reverse space-time nonlocal Hirota equation with the initial data rapidly decaying in the solitonless sector. Start from the Lax pair, we first construct the basis Riemann-Hilbert problem for the reverse space-time nonlocal Hirota equation. Furthermore, using the approach of Deift-Zhou nonlinear steepest descent, the explicit long-time asymptotics for the reverse space-time nonlocal Hirota is derived. For the reverse space-time nonlocal Hirota equation, since the symmetries of its scattering matrix are different with the local Hirota equation, the theta(lambda(i)) (i = 0; 1) would like to be imaginary, which results in the delta lambda(0)(i) contains an increasing t +/- Im theta(lambda(i))/2, and then the asymptotic behavior for nonlocal Hirota equation becomes differently.
引用
收藏
页码:708 / 727
页数:20
相关论文
共 35 条
[1]   Inverse scattering transform for the nonlocal nonlinear Schrodinger equation with nonzero boundary conditions [J].
Ablowitz, Mark J. ;
Luo, Xu-Dan ;
Musslimani, Ziad H. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
[2]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[3]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[4]   Long-time asymptotics of the nonlinear Schrodinger equation shock problem [J].
Buckingham, Robert ;
Venakides, Stephanos .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (09) :1349-1414
[5]   Integrable nonlocal Hirota equations [J].
Cen, Julia ;
Correa, Francisco ;
Fring, Andreas .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (08)
[6]   N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann-Hilbert method and PINN algorithm [J].
Chen, Yong ;
Peng, Wei-Qi .
PHYSICA D-NONLINEAR PHENOMENA, 2022, 435
[7]   Long-time asymptotics for the pure radiation solution of the Sine-Gordon equation [J].
Cheng, PJ ;
Venakides, S ;
Zhou, X .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (7-8) :1195-1262
[8]   LONG-TIME ASYMPTOTICS FOR THE CAMASSA-HOLM EQUATION [J].
De Monvel, Anne Boutet ;
Kostenko, Aleksey ;
Shepelsky, Dmitry ;
Teschl, Gerald .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (04) :1559-1588
[9]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368
[10]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&