Focused unsupervised image registration for structure-specific population analysis

被引:0
作者
Ehrhardt, Jan [1 ,2 ]
Uzunova, Hristina [2 ]
Kaftan, Paul [1 ,2 ]
Krueger, Julia [3 ]
Opfer, Roland [3 ]
Handels, Heinz [1 ,2 ]
机构
[1] Univ Lubeck, Inst Med Informat, Lubeck, Germany
[2] German Res Ctr Artificial Intelligence, Lubeck, Germany
[3] Jung Diagnost GmbH, Rontgenstr 24, Hamburg, Germany
来源
COMPUTER-AIDED DIAGNOSIS, MEDICAL IMAGING 2024 | 2024年 / 12927卷
关键词
image registration; atlas-based segmentation;
D O I
10.1117/12.3006119
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Population-based analysis of medical images plays an essential role in identification and development of imaging biomarkers. Most commonly the focus lies on a single structure or image region in order to identify variations to discriminate between patient groups. Such approaches require high segmentation accuracy in specific image regions while the accuracy in the remaining image area is of less importance. We propose an efficient ROI-based approach for unsupervised learning of deformable atlas-to-image registration to facilitate structure-specific analysis. Our hierarchical model improves registration accuracy in relevant image regions while reducing computational cost in terms of memory consumption, computation time and consequently energy consumption. The proposed method was evaluated for predicting cognitive impairment from morphological changes of the hippocampal region in brain MR images showing that next to the efficient processing of 3D data, our method delivers accurate results comparable to state-of-the-art tools.
引用
收藏
页数:6
相关论文
共 16 条
[1]   Advanced magnetic resonance imaging of neurodegenerative diseases [J].
Agosta, Federica ;
Galantucci, Sebastiano ;
Filippi, Massimo .
NEUROLOGICAL SCIENCES, 2017, 38 (01) :41-51
[2]   A reproducible evaluation of ANTs similarity metric performance in brain image registration [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Song, Gang ;
Cook, Philip A. ;
Klein, Arno ;
Gee, James C. .
NEUROIMAGE, 2011, 54 (03) :2033-2044
[3]  
Bach Cuadra M., 2015, Handbook of Biomedical Imaging, P221, DOI DOI 10.1007/978-0-387-09749-712
[4]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[5]   TransMorph: Transformer for unsupervised medical image registration [J].
Chen, Junyu ;
Frey, Eric C. ;
He, Yufan ;
Segars, William P. ;
Li, Ye ;
Du, Yong .
MEDICAL IMAGE ANALYSIS, 2022, 82
[6]  
Chen JY, 2021, Arxiv, DOI arXiv:2104.06468
[7]   Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database [J].
Cuingnet, Remi ;
Gerardin, Emilie ;
Tessieras, Jerome ;
Auzias, Guillaume ;
Lehericy, Stephane ;
Habert, Marie-Odile ;
Chupin, Marie ;
Benali, Habib ;
Colliot, Olivier .
NEUROIMAGE, 2011, 56 (02) :766-781
[8]  
Ehrhardt J., 2023, Implicitly Solved Regularization for Learning-Based Image RegistrationC//International Workshop on Machine Learning in Medical Imaging, P137
[9]   Association between pathological and MRI findings in multiple sclerosis [J].
Filippi, Massimo ;
Bruck, Wolfgang ;
Chard, Declan ;
Fazekas, Franz ;
Geurts, Jeroen J. G. ;
Enzinger, Christian ;
Hametner, Simon ;
Kuhlmann, Tanja ;
Preziosa, Paolo ;
Rovira, Alex ;
Schmierer, Klaus ;
Stadelmann, Christine ;
Rocca, Maria A. .
LANCET NEUROLOGY, 2019, 18 (02) :198-210
[10]   Deep learning in medical image registration: a review [J].
Fu, Yabo ;
Lei, Yang ;
Wang, Tonghe ;
Curran, Walter J. ;
Liu, Tian ;
Yang, Xiaofeng .
PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (20)