Attentive context and semantic enhancement mechanism for printed circuit board defect detection with two-stage and multi-stage object detectors

被引:1
作者
Kiobya, Twahir [1 ]
Zhou, Junfeng [1 ]
Maiseli, Baraka [2 ]
Khan, Maqbool [3 ,4 ]
机构
[1] Donghua Univ, Sch Comp Sci & Technol, Shanghai 201620, Peoples R China
[2] Univ Dar Es Salaam, Coll Informat & Commun Technol, POB 33335, Dar Es Salaam, Tanzania
[3] Pak Austria Fachhochschule Inst Appl Sci & Technol, Haripur 22621, Pakistan
[4] Software Competence Ctr Hagenberg GmbH, Softwarepk, A-4232 Linz, Austria
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Semantic information; Context information; Squeeze and excitation; Feature fusion; INSPECTION; NETWORK;
D O I
10.1038/s41598-024-69207-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Printed Circuit Boards (PCBs) are key devices for the modern-day electronic technologies. During the production of these boards, defects may occur. Several methods have been proposed to detect PCB defects. However, detecting significantly smaller and visually unrecognizable defects has been a long-standing challenge. The existing two-stage and multi-stage object detectors that use only one layer of the backbone, such as Resnet's third layer (C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_4$$\end{document}) or fourth layer (C5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_5$$\end{document}), suffer from low accuracy, and those that use multi-layer feature maps extractors, such as Feature Pyramid Network (FPN), incur higher computational cost. Founded by these challenges, we propose a robust, less computationally intensive, and plug-and-play Attentive Context and Semantic Enhancement Module (ACASEM) for two-stage and multi-stage detectors to enhance PCB defects detection. This module consists of two main parts, namely adaptable feature fusion and attention sub-modules. The proposed model, ACASEM, takes in feature maps from different layers of the backbone and fuses them in a way that enriches the resulting feature maps with more context and semantic information. We test our module with state-of-the-art two-stage object detectors, Faster R-CNN and Double-Head R-CNN, and with multi-stage Cascade R-CNN detector on DeepPCB and Augmented PCB Defect datasets. Empirical results demonstrate improvement in the accuracy of defect detection.
引用
收藏
页数:18
相关论文
共 57 条
  • [31] Feature Pyramid Networks for Object Detection
    Lin, Tsung-Yi
    Dollar, Piotr
    Girshick, Ross
    He, Kaiming
    Hariharan, Bharath
    Belongie, Serge
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 936 - 944
  • [32] KD-LightNet: A Lightweight Network Based on Knowledge Distillation for Industrial Defect Detection
    Liu, Jinhai
    Li, Hengguang
    Zuo, Fengyuan
    Zhao, Zhen
    Lu, Senxiang
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [33] SSD: Single Shot MultiBox Detector
    Liu, Wei
    Anguelov, Dragomir
    Erhan, Dumitru
    Szegedy, Christian
    Reed, Scott
    Fu, Cheng-Yang
    Berg, Alexander C.
    [J]. COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 : 21 - 37
  • [34] Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
  • [35] Moganti M., 1995, IEEE Potentials, V14, P6, DOI 10.1109/45.464686
  • [36] MANUFACTURING COST ESTIMATION FOR PCB ASSEMBLY - AN ACTIVITY-BASED APPROACH
    ONG, NS
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 1995, 38 (2-3) : 159 - 172
  • [37] Park J, 2018, Arxiv, DOI [arXiv:1807.06514, DOI 10.48550/ARXIV.1807.06514]
  • [38] Poudel R.P., 2019, arXiv
  • [39] ID-YOLO: Real-Time Salient Object Detection Based on the Driver's Fixation Region
    Qin, Long
    Shi, Yi
    He, Yahui
    Zhang, Junrui
    Zhang, Xianshi
    Li, Yongjie
    Deng, Tao
    Yan, Hongmei
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 15898 - 15908
  • [40] Qingfeng Zhang, 2021, 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), P911, DOI 10.1109/ICAICA52286.2021.9498174