Attentive context and semantic enhancement mechanism for printed circuit board defect detection with two-stage and multi-stage object detectors

被引:1
作者
Kiobya, Twahir [1 ]
Zhou, Junfeng [1 ]
Maiseli, Baraka [2 ]
Khan, Maqbool [3 ,4 ]
机构
[1] Donghua Univ, Sch Comp Sci & Technol, Shanghai 201620, Peoples R China
[2] Univ Dar Es Salaam, Coll Informat & Commun Technol, POB 33335, Dar Es Salaam, Tanzania
[3] Pak Austria Fachhochschule Inst Appl Sci & Technol, Haripur 22621, Pakistan
[4] Software Competence Ctr Hagenberg GmbH, Softwarepk, A-4232 Linz, Austria
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Semantic information; Context information; Squeeze and excitation; Feature fusion; INSPECTION; NETWORK;
D O I
10.1038/s41598-024-69207-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Printed Circuit Boards (PCBs) are key devices for the modern-day electronic technologies. During the production of these boards, defects may occur. Several methods have been proposed to detect PCB defects. However, detecting significantly smaller and visually unrecognizable defects has been a long-standing challenge. The existing two-stage and multi-stage object detectors that use only one layer of the backbone, such as Resnet's third layer (C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_4$$\end{document}) or fourth layer (C5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_5$$\end{document}), suffer from low accuracy, and those that use multi-layer feature maps extractors, such as Feature Pyramid Network (FPN), incur higher computational cost. Founded by these challenges, we propose a robust, less computationally intensive, and plug-and-play Attentive Context and Semantic Enhancement Module (ACASEM) for two-stage and multi-stage detectors to enhance PCB defects detection. This module consists of two main parts, namely adaptable feature fusion and attention sub-modules. The proposed model, ACASEM, takes in feature maps from different layers of the backbone and fuses them in a way that enriches the resulting feature maps with more context and semantic information. We test our module with state-of-the-art two-stage object detectors, Faster R-CNN and Double-Head R-CNN, and with multi-stage Cascade R-CNN detector on DeepPCB and Augmented PCB Defect datasets. Empirical results demonstrate improvement in the accuracy of defect detection.
引用
收藏
页数:18
相关论文
共 57 条
  • [1] LPViT: A Transformer Based Model for PCB Image Classification and Defect Detection
    An, Kang
    Zhang, Yanping
    [J]. IEEE ACCESS, 2022, 10 : 42542 - 42553
  • [2] Real-time defect inspection of textured surfaces
    Baykut, A
    Atalay, A
    Erçil, A
    Güler, M
    [J]. REAL-TIME IMAGING, 2000, 6 (01) : 17 - 27
  • [3] Cascade R-CNN: Delving into High Quality Object Detection
    Cai, Zhaowei
    Vasconcelos, Nuno
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6154 - 6162
  • [4] Carion Nicolas, 2020, EUR C COMP VIS, P213, DOI [10.48550/arXiv. 2005.12872, DOI 10.48550/ARXIV.2005.12872, 10.1007/978-3-030-58452-813, DOI 10.1007/978-3-030-58452-813]
  • [5] Fabric defect detection by Fourier analysis
    Chan, CH
    Pang, GKH
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2000, 36 (05) : 1267 - 1276
  • [6] Chen LC, 2017, Arxiv, DOI [arXiv:1706.05587, DOI 10.48550/ARXIV.1706.05587]
  • [7] PCB Defect Detection Method Based on Transformer-YOLO
    Chen, Wei
    Huang, Zhongtian
    Mu, Qian
    Sun, Yi
    [J]. IEEE ACCESS, 2022, 10 : 129480 - 129489
  • [8] Chen WY, 2020, Arxiv, DOI arXiv:1912.10917
  • [9] A novel approach to surface defect detection
    Da, Yihui
    Dong, Guirong
    Wang, Bin
    Liu, Dianzi
    Qian, Zhenghua
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2018, 133 : 181 - 195
  • [10] Dan Li, 2020, CSAI 2020: Proceedings of the 2020 4th International Conference on Computer Science and Artificial Intelligence, P233, DOI 10.1145/3445815.3445853