机构:
Michigan State Univ, 619 Red Cedar Rd,Wells Hall, E Lansing, MI 48824 USAMichigan State Univ, 619 Red Cedar Rd,Wells Hall, E Lansing, MI 48824 USA
Bhattacharya, Aritra C.
[1
]
Kundu, Bikramjit
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Dept Math, Haridwar Rd, Roorkee 247667, IndiaMichigan State Univ, 619 Red Cedar Rd,Wells Hall, E Lansing, MI 48824 USA
Kundu, Bikramjit
[2
]
Naolekar, Aniruddha C.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Stat Inst, Stat Math Unit, 8th Mile,Mysore Rd,RVCE Post, Bangalore 560059, IndiaMichigan State Univ, 619 Red Cedar Rd,Wells Hall, E Lansing, MI 48824 USA
Naolekar, Aniruddha C.
[3
]
机构:
[1] Michigan State Univ, 619 Red Cedar Rd,Wells Hall, E Lansing, MI 48824 USA
[2] Indian Inst Technol, Dept Math, Haridwar Rd, Roorkee 247667, India
[3] Indian Stat Inst, Stat Math Unit, 8th Mile,Mysore Rd,RVCE Post, Bangalore 560059, India
A space X is W-trivial if for every real vector bundle alpha over X the total Stiefel-Whitney class w(alpha) is 1. It follows from a result of Milnor that if X is an orientable closed smooth manifold of dimension 1,2,4 or 8, then X is not W-trivial. In this note we completely characterize W-trivial orientable connected closed smooth manifolds in dimensions 3,5 and 6. In dimension 7, we describe necessary conditions for an orientable connected closed smooth 7-manifold to be W-trivial.