Composition operators on variable exponent Lebesgue spaces

被引:3
作者
Bajaj, D. S. [1 ]
Datt, G. [2 ]
机构
[1] Univ Delhi, Dept Math, Delhi 110007, India
[2] Univ Delhi, PGDAV Coll, Dept Math, Delhi 110065, India
关键词
composition operator; variable exponent Lebesgue space; compactness; closed range;
D O I
10.1007/s10476-024-00015-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study composition operators between variable exponent Lebesgue spaces and characterize boundedness and compactness of the composition operators on a variable exponent Lebesgue space. We also derive a sufficient condition for composition operator to have a closed range and explain some properties which these operators share with the case of Lebesgue spaces.
引用
收藏
页码:345 / 366
页数:22
相关论文
共 20 条
[1]  
ambert LA, 1992, FUNCTIONAL ANAL OPER, V1511
[2]   Composition operators on Lorentz spaces [J].
Arora, S. C. ;
Datt, Gopal ;
Verma, Satish .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 76 (02) :205-214
[3]  
Birnbaum Z., 1931, Stud. Math., V3, P1
[4]   REDUCIBILITY OF COMPOSITION OPERATORS ON L(2) [J].
BURNAP, C ;
LAMBERT, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 178 (01) :87-101
[5]  
Castillo René Erlin, 2015, Rev.colomb.mat., V49, P293, DOI 10.15446/recolma.v49n2.60447
[6]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[7]   Composition operators in Orlicz spaces [J].
Cui, YN ;
Hudzik, H ;
Kumar, R ;
Maligranda, L .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 76 :189-206
[8]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[9]  
DOUGLAS RG, 1972, BANACH ALGEBRA TECHN
[10]  
Eisner T., 2015, Graduate Texts in Mathematics, V272