Exsolved materials for CO2 reduction in high-temperature electrolysis cells

被引:28
作者
Xu, Min [1 ,2 ]
Cao, Ran [1 ]
Qin, Han [1 ,4 ]
Zhang, Nuoxi [1 ]
Yan, Wenle [1 ,3 ]
Liu, Liming [1 ]
Irvine, John T. S. [5 ]
Chen, Di [1 ]
机构
[1] Tsinghua Univ, Future Lab, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Acad Arts & Design, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Weiyang Coll, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[5] Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Fife, Scotland
来源
MATERIALS REPORTS: ENERGY | 2023年 / 3卷 / 02期
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
CO; 2; reduction; Exsolution; Solid oxide electrolysis cells; Catalysts; SOLID OXIDE ELECTROLYSIS; IN-SITU EXSOLUTION; CARBON-DIOXIDE ELECTROLYSIS; GROWN NICKEL NANOCATALYST; NI ALLOY NANOPARTICLES; PEROVSKITE CATHODE; LAYERED PEROVSKITE; OXYGEN REDUCTION; ANODE MATERIALS; RECENT PROGRESS;
D O I
10.1016/j.matre.2023.100198
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical reduction of CO2 into valuable fuels and chemicals has become a contemporary research area, where the heterogeneous catalyst plays a critical role. Metal nanoparticles supported on oxides performing as active sites of electrochemical reactions have been the focus of intensive investigation. Here, we review the CO2 reduction with active materials prepared by exsolution. The fundamental of exsolution was summarized in terms of mechanism and models, materials, and driven forces. The advances in the exsolved materials used in hightemperature CO2 electrolysis were catalogued into tailored interfaces, synergistic effects on alloy particles, phase transition, reversibility and electrochemical switching.
引用
收藏
页数:20
相关论文
共 237 条
[1]   Transition metal-doped rare earth vanadates: a regenerable catalytic material for SOFC anodes [J].
Adijanto, Lawrence ;
Padmanabhan, Venu Balaji ;
Kuengas, Rainer ;
Gorte, Raymond J. ;
Vohs, John M. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (22) :11396-11402
[2]   Electrode kinetics of porous mixed-conducting oxygen electrodes [J].
Adler, SB ;
Lane, JA ;
Steele, BCH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) :3554-3564
[3]   Factors governing oxygen reduction in solid oxide fuel cell cathodes [J].
Adler, SB .
CHEMICAL REVIEWS, 2004, 104 (10) :4791-4843
[4]   Surface nickel particles generated by exsolution from a perovskite structure [J].
Aguero, Fabiola N. ;
Beltran, Ana M. ;
Asuncion Fernandez, Maria ;
Cadus, Luis E. .
JOURNAL OF SOLID STATE CHEMISTRY, 2019, 273 :75-80
[5]   A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n=1, 2 and 3), for solid-oxide fuel-cell cathode applications [J].
Amow, G. ;
Davidson, I. J. ;
Skinner, S. J. .
SOLID STATE IONICS, 2006, 177 (13-14) :1205-1210
[6]   New fabrication technique for a Ni-YSZ composite anode from a core-shell structured particle [J].
An, Yong-Tae ;
Choi, Byung-Hyun ;
Ji, Mi-Jung ;
Lee, Kyung-Jin ;
Hwang, Hae Jin .
SOLID STATE IONICS, 2012, 207 :64-68
[7]  
[Anonymous], CO2
[8]   ZIRCONIA-BASED SOLID ELECTROLYTES - MICROSTRUCTURE, STABILITY AND IONIC-CONDUCTIVITY [J].
BADWAL, SPS .
SOLID STATE IONICS, 1992, 52 (1-3) :23-32
[9]   New Insight into the Doped Strontium Titanate Cathode with In Situ Exsolved Nickel Nanoparticles for Electrolysis of Carbon Dioxide [J].
Bai, Lu ;
Li, Haibin ;
Yan, Zhen ;
Hao, Xiaohan ;
Ke, Minghui ;
Xie, Kui ;
Li, Baoguang .
ADVANCED MATERIALS INTERFACES, 2021, 8 (03)
[10]   HIGH-TEMPERATURE WATER ELECTROLYSIS - THE CATHODIC PROCESS AT THE CERMET (PT+LA0.8SR0.2CRO3) ZIRCONIA INTERFACE [J].
BARBI, GB ;
MARI, CM .
SOLID STATE IONICS, 1988, 26 (03) :243-250